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Ultrafast spatio-temporal effects in optically excited semiconductors are
investigated by solving the coupled semiconductor Maxwell-Bloch equations
which include the relevant relaxation phenomena. The analysis is used to
describe transport of electronic excitations on nano- to micrometer scales
with a dynamic range on the femto- to picosecond time scale.
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1. Introduction

Recently, the dynamics of excitons, biexcitons and the electron-hole plasma
after excitation with femtosecond light pulses (1 fs = 10 -15 s) in semiconductor
micro- and nanostructures has been studied extensively [1, 2]. Coherent nonlinear
effects such as the optical Stark-effect, four-wave mixing (FWM), photon echoes,
and Rabi oscillations have been observed [3]. Whereas the linear optical suscep-
tibility is dominated by electron-hole Coulomb (exciton) effects, at moderate in-
tensities, biexcitons may form and carrier-carrier scattering takes place for the
excitation of continuum states. For sufficiently high electron-hole densities in a
semiconductor, negative absorption, i.e., optical gain appears [4].

The purpose of this paper is to give a short introduction in the theoretical
treatment of spatiotemporal effects in semiconductor optics and to review some
recent results. Our analysis includes light propagation effects in optically thick
samples as well as optically induced electron and exciton transport.

2. Observables and equations of motion

Optically excited electron-hole-pair excitations decay via stimulated or spon-
taneous radiative recombination, thus emitting optical radiation which possibly
interferes with the applied electromagnetic fields. The simplest example of a mea-
surable quantity is the electromagnetic field intensity or intensity correlation func-
tions. As usual, the electromagnetic field is represented by the scalar potential Φ
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and the vector potential A. In the transverse gauge (V . A = 0), the equation of
motion for the vector potential is given by [5]

where c is the velocity of light in the background medium and j T is the transversal
part of the current j

Here, the material operators are the Fermionic annihilation and creation operators
αι, αt, which annihilate and create electrons in the eigenstates Φ ι of the single
particle material Hamiltonian. This describes the motion of a single valence elec-
tron in a periodic lattice potential plus the additional confinement potential of the
quantum structure. Thus the electron index 1is a compound quantum number
which includes subband, band and wave number 1 = m i , λ1, k i .

The equations of motion for the expectation value of the current matrix
(α†1α2) have to be derived from the full Hamiltonian [5, 3], which includes the scalar
potential Φ via the longitudinal Coulomb coupling between the carrier states Φ ι as
well as the coupling to the vector potential A. To derive the equations of motion
for the quantum mechanical expectation values of (α†1 α2) = tr(α†1 α2σ), we apply a
projection formalism [6] to the von Neumann equation for the density operator σ

As a result we obtain equations of motion for the relevant density matrix σ12 =
tr(α†1 α 2 σĆeι) = tr(α†1 α 2σ). For the purpose of coherent optics it is convenient to use
the canonical non-equilbrium and non-stationary density operator σreI as

where we have chosen for the observation space the observables which deter-
mine the current via Eq. (2). We need here to include all possible combina-
tions of twoparticle operators α †1 α 2. The quantities λ in Eq. (4) are the usual
Lagrange-multipliers which contain the full time dependence of the system [6].
The projection operator formalism divides the equation for the relevant density
matrix into a mean-field and a correlation part. The mean-field part contains the
usual Hartree-Fock contributions whereas the correlation part describes, depend-
ing on the approximations made, higher bound Coulomb states such as biexcitons
or Coulomb scattering. In this paper we use a two-band model (λ = v, c) excited
with a polarized single beam. Under these conditions it is sufficient to consider
Coulomb scattering contributions only and to neglect higher bound states occur-
ring in two polarization calculations [7].

3. Light pulse propagation
In this section, we investigate the propagation of plane wave femtosecond

pulses through extended bulk semiconductors. Due to the interaction with the
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material, the pulse E(r, t) = — -A accumulates temporal deformations which con-
tain information on the light-material interaction. For plane wave propagation,
the equation for the forward propagated electric field envelope reads

where j = —iωgap(dcv/V) Σ1,2 σvck1 ,k2. The iteration scheme for the field is equiva-
lent to a slowly varying envelope equation in semiconductors [8]. To describe the
propagation self-consistently, we have to derive the material equations for σ12.
Non-propagating electronic excitations are characterized by a vanishing momen-
tum Q = k1 — k2 , i.e., σvck1k2 = σkiδk 1 ,k 2 . We use the electron—hole notation where
the interband current dynamics is introduced as Pk =	 = (at k αc ,k). This quan-
tity couples to the occupation numbers for electrons and holes, fk = (at k αc ,k),

where we have defined a generalized Rabi-frequency Dk and renormalized energy
transitions εk. It can be recognized that the MFCs show significant differences
in comparison with the two level Bloch equations [9]. The optical transitions are
inhomogeneously broadened due to the different electronic wave number states k.
Moreover, the Rabi-frequency and the energies are renormalized by many particle
Coulomb contributions and can be written as a renormalization of single particle
properties. They yield a decrease in the effective single particle energy for popu-
lated electron—hole states and an amplification of the external field by the Coulomb
induced field of all k dependent oscillators [3]. The correlation contributions (CCs)
read

where Σ denotes diagonal and nondiagonal polarization dephasing and Γ is the
expression for in- and out-scattering in the equation for the distribution functions
[10]. At a level beyond mean-field theory, these contributions cannot be written
as energy or field renomalizations. The CC leads to the interference of different
single particle oscillations that result in optical dephasing of the total polarization
and carrier relaxation.

The material equations describe the field induced transitions Pk and the
population probability fk/ h of the states in a semiconductor medium. Because of
the Coulomb-interaction contained in the MFC the formation of bound states (ex-
citons) and scattering states (free electron—hole pairs) takes place (linear optics).
Each exciton corresponds to a strong peak in the optical susceptibility below the
band gap whereas the continuum is more or less structureless [3]. In the nonlinear
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optical response, finite electron—hole densities fk/h can be generated and the inter-
action with the optical field is influenced via the Pauli-b1ocking factor 1— fek — fh k
and the Coulomb renormalizations. If the blocking factor is negative, the system
switches from the absorbing to the gain state, where light amplification is possible.

Si. Polaritons and polariton-scattering

We first investigate the interaction of a weak optical pulse with the , sxcitonic
resonance in GaAs. For this purpose, the initial pulse width FWHM = 400 fs
(full width at half intensity maximum) is chosen to excite only the first (ls) ex-
citon. Figure la shows on a logarithmic scale the temporal pulse intensity Ι/Ι 0
for different propagation distances. At a distance of z = 0.2 m, i.e., shortly after
the entrance in the sample, one recognizes that the leading edge of the pulse is
absorbed and reemitted after the trailing edge. For a larger propagation length
(10 m), the transmitted pulse develops strong temporal oscillations.

This shape modulation is caused by the frequency dependent group velocity
modifications due to the strong refractive index in the vicinity of the excitonic
resonance. Therefore, different spectral polariton components arrive at different
times at the end of the sample and interfere with each other resulting in a pro-
nounced temporal interference pattern. To investigate the intensity dependence
of the polariton beating we have varied the strength of the input pulse intensity.
Figure 1b shows the intensity dependence at z = 2 μm. It can be recognized that
for increasing input intensity the signal decreases. The polariton beating gradually
washes out and vanishes completely for strong fields. The decay of the coherent
signal results from the excitation induced dephasing and energy fluctuations of
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the excitonic coherence via the scattering with excitons and electron—hole pairs.
Such polariton beating effects and their excitation dependence have been recently
observed experimentally, for a detailed study compare [11].

3.2. High intensity off-resonant propagation

After the discussion of resonant pulse propagation we investigate high in-
tensity propagation of a short optical pulse (FWHM=100 fs) well below the band
edge. The situation for thin samples has widely been studied in the investigation
of the optical Stark-effect, where the spectral response of the excitonic resonance
to an off-resonant light field is investigated [12]. In general, off-resonant excitation
yields to an adiabatic response of the semiconductor if the detuning Δ of car-
rier frequency and optical transitions is much larger than the inverse pulse width
Δ » FWΗM -1 . In this case, the electron-hole density follows the shape of the
pulse envelope [9]. In the following, we investigate the interaction of a semicon-
ductor with a high intensity pulse (FWHM = 100 fs, pulse area f dtdE(t) = 6π)
with a carrier frequency corresponding to 10-Rydberg energies below the excitonic
resonance where adiabatic following of the electron density is expected. Figure 2a
shows that the electron density exhibits a maximum at t = 0, where the light pulse
peaks and decreases but remains finite after the pulse. The adiabatic following of
the electron density with respect to the pulse envelope is not complete because of
the finite background and carrier induced dephasing. With increasing propagation
length, we observe strong temporal density oscillations which lead to a temporal
break-up of the pulse intensity, compare Fig. 2b. It can be recognized that the

pulse break-up is initiated by the oscillations in the electron density. Comparing
density and intensity plots at z = 120 μm it can be recognized that the density
shows oscillations whereas the pulse is still unmodulated. The electron density
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oscillations correspond to a series of absorption (increasing density) and ampli-
fication (decreasing density) which manifest itself in modulations of in the pulse
shape for larger propagation distance. The temporal modulation of the density
itself is propagation induced. The analysis of the numerical data shows that the
density oscillations occur at a propagation distance where the limit of adiabatic
following is violated by the propagation induced phase change φ(Ι) of the optical
pulse. φis the socalled frequency chirp which determines the instantaneous pulse
frequency w + φ at time I. At the spatial distance of approximately 100 m where
the density modulation occurs, the induced frequency shift compensates the initial
detuning of 10-Rydberg energies of the pulse and drives a fast density dynamics
which cannot be overcompensated by the initial detuning of the pulse. This effect
has been experimentally observed in semiconductor wave guide structures at room
temperature [13].

4. Propagation of material excitations

4.1. Transport of electron-hole pairs: phonon lmited propagation

In this section we study the propagation of optically generated electron wave
packets in a quantum well under the influence of collisions with a phonon reser-
voir. Our calculation includes the propagation on femtosecond time scales where
ballistic motion of electrons occurs [14] up to several picoseconds. After that time
electron-phonon scattering dominates the propagation dynamics and a diffusive
type of motion sets in. The field equation is solved in the paraxial limit

where Ε ,0 is the incident spatially localized excitation. Applying a bath approx-
imation to the phonon system, the CCs for the polarization functions read

where w are the nonlocal phonon scattering rates. Similar equations can be de-
rived for the distribution functions [15]. We numerically solve these equations for
a situation, where a focused laser pulse (1 m) generates a localized polariza-
tion and electron distribution. Since we are interested in the situation, where the
electron-phonon and not the electron-photon interaction determines the dynam-
ics, the pulse length is chosen to be short in comparison to the characteristic
electron-phonon scattering time.

Figures 3a, b show the computed spatial profiles of the electronic density
as a function of the radial distance |nd | from the beam focus for different times
after the optical pulse and for two different temperatures (T = 0, 300 K). The
insets display the energy distribution of the electronic excitation for times, where
a quasi stationary energetical distribution has been reached after a relaxation pro-
cess of the optically generated non-equilibrium excitation. We see that for both
temperatures the initially generated non-equilibrium energy distribution develops
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a number of energetically separated phonon replica. Note that although the ener-
getical distribution does not change in time anymore, electron—phonon scattering
takes place and affects the spatial motion of the electrons. In a free particle picture,
i.e., without the electron—phonon interaction, the energy distribution is a measure
of the absolute value of the electron velocity. For Τ = 0 K (Fig. 3a) two distinct
phonon replica are observed in the stationary energy distribution. The spatial peak
located at the center of the laser focus corresponds to the low energy peak of the
energy distribution. The second spatial peak which develops after approximately
8 ps, moves consistently with the velocity distribution of the high energy peak of
the electronic distribution.

The situation is well described within the picture of ballistic electron prop-
agation. As a consequence of the enhanced electron-phonon interaction at higher
temperatures (Τ = 300 K) several phonon replica appear in the quasi-stationary
energy distribution (see inset in Fig. 3b). Consequently, the electronic velocity
distribution of a free particle wave packet involves several peaks separated by the
phonon energy. On the other hand, for higher temperatures, the corresponding
wave packet peaks for the different center velocities at the phonon replica do not
develop. The spatial distribution exhibits only weak broadening with increasing
time. These features cannot be understood solely from the energetic distribution
of the electrons, since that distribution depends only on the absolute value of the
velocity. A numerical analysis shows that for higher temperature the distribution
of the angle between the single particle velocity and the position vector directed
out of the focus is smeared out by the electron—phonon interaction. The direction
of the electron motion is more and more randomized with increasing time and thus
counteracting the ballistic motion [15].
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The simplest analysis of the situation can be given for optical excitation
having a carrier frequency directly at the semiconductor band edge. Here, the
electronic wave packet is localized around the focus and is less structured in real
space for lower temperatures than for above band edge excitation. We analyze the
results within the mean square displacement (MSD) of the distribution Δ 2 (t) =
N-1 f dr2||r2||fe(r||) and Δ0=Δ(t= 0). The MSD can be used to characterize
a motion as ballistic Δ 2 - Δ20 α t2, diffusiveΔ2-Δ20 αt.Figure 4 shows a
temperature dependent crossover from a regime with Δ 2 - Δ 20 α t2 at earlier
times to a regime with Δ 2 - Α20 α t at larger times, thus indicating the transition
of ballistic to diffusive wave packet propagation for band edge excitation. The
temperature dependence of the crossover time t between the two regimes is shown
in the inset of Fig. 3 as a functioni of temperature. Note that the temperature
dependence of the cross-over time can be fitted quite well with the inverse of the
phonon distribution function t α n 0 (Τ) -1 as can be seen in the inset.

4.2. Surface polariton-transport: near-field optics
In this section, we focus on the near-field response of excitons in a quantum

well (QW). The idea of near-field optical microscopy is to increase the spatial reso-
lution of conventional microscopy by using an object smaller than the wavelength
of light as source or detector of electromagnetic radiation [16]. Most of todays
near-field microscopes consist of a fiber tip, smaller than the wavelength of light,
which can act as near-field emitter or collector if the sample is close enough to the
tip. In a quantum well, where the motion of the electronic excitation is restricted
to the plane (z = 0) of a thin layer we approximate the current as
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where the density matrix is reduced to the is exciton state. To not overload the
analysis, we study a model system, where a point-like near-field source excites
only longitudinal excitons. Here, the propagation vector and the polarization of
the exciton are parallel to each other in the plane of the well. For heavy holes the
dipole moment of the excitons has no z-component and the field equation Eq. (1)
can be solved in Fourier-space

where κ2 = ω 2 /c2 — Q2 and kl denotes "lc N wlle within the slowly varying
envelope appoximation (SVEA) and Q = Q is the Fourier variable in plane of
the well. Using the self-consistent transversal field the dispersion relation for the
exciton σvcQW (Q, ω) coupled to the radiation field only is obtained

Here, 114y denotes the coupling constant of the well and the light field. The disper-
sion reprodnces for Q/kl -+ οο the limit of free propagating excitons. For excitons
having smaller wave vectors than ωo/c (Q/kl < 1) the square-root in Eq. (14)
becomes imaginary, thus describing excitons which decay radiatively into modes
of the electromagnetic field. The excitons with Q/kl > 1 are called non-radiative
because they do not decay into photons [17]. Figure 5 shows the spatial distribu-
tion of the excitonic density at different times after the switch on of the near-field
source. It can be recognized that at t > 0 a peaked exciton distribution at the
center of the excitation is found. At larger times, the distribution expands out of
the excitation region. It can be recognized that the envelope of the packet develops

spatially oscillating structure. The oscillation frequency decreases for increasing
times at a fixed position and increases with propagation distance for a fixed time.
The reason for the built-up of a wave packet and its characteristic propagation
dynamics can be traced back to the excitation of excitons with different wave
numbers Q by the near-field source. In a simplified picture, the excitons propa-
gate after their excitation according to their dispersion relation Eq. (14). Hence,
excitons with Q < kl decay radiatively whereas non-radiative states Q > kl may
propagate long distances without radiative decay. Thus, all excitons propagating
on a longer time scale than Γ 1 have at least a velocity determined by the mo-
mentum Q = kl. This limit determines the front of the trailing edge of the wave
packet. The leading edge of the wave packet is determined by the fastest excitons
excited by the near-field source. A numerical analysis shows that the spatial oscil-
lations on the leading edge of the wave packet can be understood by superposition
of exciton at Q kl and free exciton at Q » kl.
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5. Summary

In conclusion, we have presented self-consistent solutions of the Maxwell—
Bloch equations for spatio temporal dynamics in semiconductors. Onr analysis in-
cludes light as well as electronic propagation phenomena and allows us to describe
the transition from linear polariton propagation to nonlinear polariton scattering
for far- and near-field optics.
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