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QUANTUM DOTS - THEORY FOR EXPERIMENTS
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A simple model based on the effective-mass method and treating a quan-
tum dot as a small irregularity of the periodic crystal field is developed and
used for the description of the radiative recombination of an exciton captured
in that quasi-zero-dimensional structure. The additional peaks appearing in
the photoluminescence spectra at the critical quantum dot size are predicted
as a consequence of the metastable excited states occurring in the energy
spectrum of a confined exciton. The obtained dependence of the photolumi-
nescence spectrum on the dot size and magnetic field reproduces well the
available experimental results.
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1. Introduction

Quantum dots are the quasi-zerodimensional semiconductor structures which
can bind a small and well controllable number of carriers (conduction electrons
and/or valence holes), and thus often referred to as artificial atoms [1]. A num-
ber of techniques have been mastered to obtain the dots. The lithography com-
bined with etching allows for the creation of tiny pillars etched out of a quantum
well structure, where the confinement of carriers comes from the nonzero electron
affinity of the well material. The etched dots, typically rectangular or circular, can
reach the diameters of 10+100 nm [2]. In another method the miniature electrodes
can be lithographically created above the surface of a quantum well. These elec-
trodes produce an electric lateral confinement free of edge defects [3, 4]. The con-
fining barriers localizing the quasi-twodimensional electrons can also be created
by the focused-laser-beam (FLB) induced local interdiffusion of atoms between
a pair of coupled quantum wells [5]. More recently various self-organization pro
cesses have been successfully employed in the spontaneous growth of the socalled
self-assembled quantum dots (SAD). Such dots are spontaneously formed in the
strain-induced Stranski-Krastanow transition, in the growth of materials with
a significant mismatch of lattice constants [6-8]. The SAD's grow in the form
of lenses or pyramids embedded in the substrate material, and typically reach
10-30 nm in diameter.
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What allows fora common treatment of different quantum dots, created by
numerous growth techniques, is that they are often in form of small islets embed-
ded in a surrounding crystal structure, typically in a quantum well structure. It
seems that specially the optical experiments on quantum dots show their similar
behaviour, which should be thus explained within a simple and general model.
Namely, in a series of recent experiments carried out on various types of dots, the
photoluminescence (PL) spectrum probing the recombination of excitons localized
in the dots consisted of a couple of peaks, unlike it is in the case of the single-mode
emission from quantum wells [5, 7-9]. As reported, the measured splitting is sen-
sitive to the dot diameter. The application of a weak magnetic field leads to the
emergence of the additional third PL peak [10], which however disappears in high
fields, where only a single main PL peak is observed.

Due to the expected applications of quantum dots in the new-generation
optical or optoelectronic devices, such as the quantum-dot-based lasers [11] or
optical memories [12], the need arises to fully understand the optical properties of
these systems. A number of attempts have already been made where the dot was
modeled through its own band structure, different from that of the surrounding
material [13]. In this paper we shall use a simple and general model derived from
the effective-mass method, where the higher peaks in the PL spectrum appear and
vanish together with the low-energy metastable states in the exciton energy spec-
trum. We must however limit ourselves here to the brief overview of the calculus
and to the discussion of the most important results, while the complete solution
of the presented model will be published elsewhere [14].

2. Model

Let us assume the model, where the dot is defined as a local perturbation
to the crystal field of a surrounding semiconductor. Since the interaction between
the quantum dot and the carriers (conduction electrons and valence holes) has
the electric nature, the empty dot can either attract electrons and at the same
time repel holes, or vice versa (obviously, also the charge-neutral electron—hole
pairs can be localized in such a dot). In the following the dot—carrier interaction
will be modeled by a pair of single-particle potentials different only in the sign:
+ V0 exp(-r 2 /L2 ), where L measures the dot radius, and V0 scales the interaction
strength. In order to fix the signs we choose the dot binding electrons, i.e. the
signs "-" and "+" in the above definition correspond to the electron and the
hole, respectively. We shall also take into account the magnetic field B acting
across the quantum-dot plane, which rearranges the single-electron and single-hole
energy spectra, and enhances the carrier confinement. The Hamiltonian Η of a
confined electron-hole pair is a sum of the single-particle terms He and Hh, and the .

Coulomb interaction potential VC(re, rh ) = -e2/ε|re-rh |, scaled by the dielectric
constant ε. The single-electron Hamiltonian is

where re, Pe, and lz e are electron position, momentum, and z-th component of
angular momentum, /fie is the effective mass and ωce = eB/cμe is the cyclotron
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frequency. The single-hole Hamiltonian Ηh is obtained from He by replacing the
subscripts: e → h, and reversing the sign of the angular-momentum term (due to
the opposite charge). The bare single-particle potential of the electron is

and that of the hole Vh is again obtained from Ve by replacing the subscripts:
e -^ h, and reversing the sign of the first (bare confinement) term.

In the following we shall fix the curvature of the bare electron confinement,
i.e. fix the following units of energy and length: ħω 0e = const and λ0e = const,
defined as: ω 20e = 2V0/μeL2 and λ20e = ħ/μeω 0e, respectively. Varied will be the
parameter α = ħω0e/V0 = 2λ20e/L2 (the inverse, α -1 , counts the number of bound
electron shells in the absence of a magnetic field).

3. Electron-hole pair in the quantum dot

Within the Hartree approach we shall look for the exciton wave-function
in the form of a product: Φ(re , rh) = φe(re)φh(rh), where the electron and hole
wave-functions (be and φh satisfy the usual self-consistent equations. The elec-
tron and hole Hartree Hamiltonians Ή e and Hh are obtained by adding the
self-consiStent interaction terms to the single-particle Hamiltonians He and Ηh
defined by (1), i.e. by replacing the single-particle potentials Ve and Vh by the
effective Hartree potentials Ue and Uh:

amd Uh is obtained from Lie by the interchange of subscripts: e ↔ h. The electron
and hole ^Iartree energies Ee and Eh are counted here from the bottom/top of the
conduction/valence band, respectively, and the total exciton energy

is counted from the band-gap Εg.
Provided that the Coulomb interaction is weaker than the electron confine-

ment we solve the Hartree equations defined by He and H h perturbatively. In
the zeroth-order approximation we neglect the electron-hole interaction in Eq. (3)
and approximate Ve by a harmonic well of frequency ω2ce ='3e + ω^e/4 = 4,32 .
In this approximation, the electron ground-state energy is Ee = - V0 -F ħωce =
hω0e (-1/α + β), and the corresponding wave-function is a usual Gaussian.

In the next step of perturbation we put the expression for the zeroth-order
electron wave-function into Uh (cf. Eq. (3)), and arrive at the eigenequation for
Nh, with the potential Uh reading

where Ι0 is the Bessel function. The typical shape of Uh is shown in Fig. 1. It has
two minima, one at rLh Ξ 0 and the other at rRh > 0. With the increase in α,
the energies of the pair of minima, ULh = Uh (0) and URh = Uh(rRh), decrease.
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Simultaneously, the second minimum approaches the first one and eventually dis-
appears.

The motion of a hole in a double-well potential Uh can be solved approxi-
mately by independently studying the motions in the two wells, and later includ-
ing (perturbatively) the coupling between the wells via the off-diagonal tunneling
matrix element. Thus the pair of lowest-energy hole states can be obtained by
diagonalizing Hh in the twodimensional subspace spanned by the pair of ground
states in the two wells treated separately: ΨLh and ΨRh. The ground state (i = 1)
and the first excited state (i = 2) of the hole are hence assumed in the form

with the coefficients CL and cR calculated from the minimum energy condition. Due
to the non-vanishing coupling between the wells, the corresponding pair of energies:
Ε 1) and 4h2) , are always separated by a gap, even in the case of degeneracy of
the single-well levels. Due to the same parity (zero angular momentum) of both
single-well ground states ψLh and ΨRh, also the two coupled states 4;1) and φĥ(2)
are of the same parity. First (i = 1) corresponds to the hole residing in the center
of the dot (bound state only in a magnetic field) and the latter (i = 2) to the
hole forming a ring surrounding the dot. Summarizing, in result of a double-well
structure of the H artree potential, the low-energy excited state appears in the hole
energy spectrum, with the same parity as the ground state.

In the next step of perturbation we shall now calculate for the pair of hole
states the corresponding effective electron Hartree potentials: U4 1) and U4 2) (cf.
Eq. (3)). As shown in Fig. 2, the potential Ue (2) corresponding to the hole in the
ring-like state usually also has two minima, at r = rLe(2) - 0 and at r = rR e(2) > 0,
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while U4 1) , corresponding to the hole in the center, always only one, at r = 4e) Ξ Ο.
Putting the potentials U ) into the Hartree Hamiltonian H e we arrive at the

electron equation of motion, solved analogously as in case of the hole. Whenever
U (1) has two minima, there will be two low-energy states with the same parity (zero
angular momentum) in the electron energy spectrum, denoted as φe(ij) (j = 1
and 2). These states are approximated in the form of linear combinations of the
ground states of the two uncoupled wells

In the state with j = 1 the electron resides in the center of the dot, and in the state
with j = 2 occupies the ring around the second minimum of U e . Hence, depending
on whether Ue(i) has one or two minima, there will be or not a low-energy excited
electron state with the same parity as the ground state.

Tracing the binding and delocalization of electron and hole Hartree states
in a varying dot size and magnetic field, and combining these states into possible
pairs (i, j = 1, 2), we can classify the possible states of an exciton

with energies

The Coulomb energy Vc(i) is here approximated by the expectation value of the
Coulomb potential in the exciton state with the hole in its state i, and the elec-
tron in its zeroth-order state (in this approximation the interaction energy can be
evaluated analytically).
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The crucial property of the states (8) is that all appearing electron and
hole Hartree states have the same (zero) angular momentum, and therefore the
dipole-type radiative transitions between each pair of levels are forbidden. Hence,
when the relaxation through the emission of phonons is suppressed due to the
small dot dimensions [9], and the only remaining mechanism of relaxation involves
the emission of a far infrared photon, these excited states (8) are metastable, and
give rise to the appearance of additional peaks in the PL spectra of quantum dots,
as explicitly listed below.

In zero or very weak magnetic fields, there are two exciton states, with
(ij) = (21) and (22), and thus there are two PL peaks separated by ΔΕ(21,22) =

|Εe(22) —Ε21)|. The dependence of the spectrum on the dot size, consistent with
a number of experiments [5, 7, 8], is shown in Fig. 3.

In relatively weak magnetic fields (B 2 = 3 T), there are two electron—hole
pair states with (ij) = (11) and (21), and thus two PL peaks separated by a gap
of ΔΕ(11,21) = |Εh 11) — Εe(21) -+ Vc( 1 ) — Vc(2)|.

In moderate magnetic fields (Β 4 ¸ 6 T) and for certain range of the
parameter α, in addition to the doublet of states with (ii) = (11) and (21), the
third electron—hole pair state appears with (ij) = (22). Thus the third PL peak
emerges, separated from the second by ΔΕ(21,22) =  — Ε^21)|. When α is
either too small or too large, there triplet of peaks is replaced by a doublet, and
further by a single peak for very small dots. Note that three is the maximum
number of metastable states of a single exciton (PL peaks) predicted within our
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model at any magnetic field and dot size (at low excitation powers), which agrees
with the experiment of Bayer et al. [10].

In strong fields (B > 8 T) higher peaks subsequently disappear, and the PL
spectrum consists of a single main peak.

Summarizing, the magnetic-field evolution of the PL spectrum of a quantum
dot qualitatively depends on the size of the quantum dot. Namely, the two scenarios
are possible: (i) medium dot: there are two peaks at Β 0 = 0, the third one emerges
at Β1 > 0 and disappears at Β2 > B1 , and finally the second peak disappears at
Β3 > B2; (ii) small or large dot: there are two peaks for all fields below the critical
value, at which the higher peak disappears.

4. Conclusion
In conclusion, the recombination of an exciton confined in a quantum dot

has been studied theoretically with and without the inclusion of a magnetic field.
The electron and hole self-consistent potentials, determined in the effective-mass
approach, exhibit a double-well structure. The positions and depths of the pair
of minima of these potentials depend strongly on the dot size. In consequence,
the blueshift of the overall PL spectrum is observed with diminishing the dot.
Moreover, the doublet of peaks corresponding to the occurrence of an exciton
metastable state behaves exactly as observed in the experiment, when the dot
radius is varied: (i) when the dot is of a medium size, the intensity of the additional
peak is comparable to that of the main peak, and the energy gap between the two
peaks is small, (ii) when the dot is smaller or larger than the intermediate, critical
size, the additional peak is much weaker than the main peak, and the energy
spacing between the two is large.

The magnetic field has a significant influence on the shape of the effective
potentials, as it modifies the confinement of both carriers. In weak fields the hole
potential has a shape of the double well, but both corresponding electron potentials
have only a single minimum, and therefore only two PL peaks are observed. For
intermediate magnetic fields and for certain sizes of the dot an additional minimum
appears in the electron potential, which leads to the appearance of an additional,
third PL peak. In strong magnetic fields both potentials have the single-well struc-
ture, which reduces the PL spectrum to a single peak.
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