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RESONANT TUNNELLING STUDIES OF CHAOS
IN QUANTISED SYSTEMS
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This paper gives a brief introductory overview of quantum chaology,
with particular reference to recent experimental work involving the use of
semiconductor heterostructures. In the presence of a tilted magnetic field, a
double-barrier resonant-tunnelling device incorporating a quantum well pro-
duces a chaotic stadium for electron motion. The basic properties of this
system are described. It is shown how resonant magnetotunnelling spec-
troscopy provides firm experimental evidence for the effect of scarred wave
functions on a physically-measurable property, in this case the measured
current—voltage characteristics of the device. The paper concludes with some
speculations concerning for the development of this field.

PACS numbers: 72.20.My, 73.40.Gk, 85.30.Mn, 05.45.+b

1. Quantum billiards, unstable orbits and scarred wave functions

Quantum chaology has been defined by Berry [1] as the “study of semi-
classical, but non-classical, behaviour of systems whose classical motion exhibits
chaos”. Much of the theoretical work in this field has focused on the classical mo-
tion and corresponding eigenstates of particles which are confined to move within
a two-dimensional stadium (also commonly referred to as a billiard) [1-3]. Particles
are assumed to bounce elastically off the walls of the stadium, with specular re-
flection. The motion within the confines of the stadium is normally assumed to be
free and frictionless. Particles moving in square- and circular-shaped stadia have
regular motion, with one or two characteristic periods; in mathematical terms, this
means that the equation of motion is separable into two one-dimensional parts.
Examples of stadia which give rise to chaotic motion are the Bunimovich stadium
(a square area with two semicircular areas adjoined to opposite sides; for experi-
mental stadia see Ref. [4]) and the Sinai billiard [5] (a square with a hard-walled
circular “no-go” area in the centre). The properties of unstable but periodic clas-
sical orbits are of fundamental importance for the quantum chaology of these
types of billiard [1, 2]. These orbits are associated with regular clustering of the
quantised energy levels of the system, which gives rise to energy-periodic fluctua-
tions in the density of states. This effect is described in terms of the well-known
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Gutzwiller trace formula [2], in which the energy spacing between clusters of lev-
els, AE = h/r,, where 7, is the period of the unstable orbit. Periodic unstable
classical orbits are also closely associated with regions of enhanced probability
density for some of the eigenfunctions of the quantised system. This effect is com-
monly termed “wave function scarring”, because the classical trajectory somewhat
mysteriously leaves its mark or “scar” on the quantum state [6].

At the experimental level, quantum chaos has been studied by investigat-
ing the spectra of hydrogen and related atoms in high magnetic fields [7-14],
and by studying the ionization of atoms in the presence of large microwave elec-
tric fields [15]. Theoretical work by Du and Delos [8] has shown that both level
clustering and scarring can contribute to the intensity oscillations of the photoab-
sorption spectrum of the highly-excited states of atomic hydrogen at high fields,
an effect first reported by Garton and Tomkins [7]. However, this theory says
nothing about the contribution of the individual discrete or quasi-discrete states
of the system. Further work on the distribution of scar strengths over eigenstates
has emphasised that the observable photoabsorption peaks in the chaotic regime,
near the photoionization threshold of hydrogen, cannot in general be related to
individual eigenstates. As noted by Heller recently [16], these atomic spectroscopy
measurements only provide indirect evidence for the existence of scarred states.

2. Quantum chaos in semiconductor heterostructures

Although scarring eflects have been observed in the resonant response of
classical electromagnetic microwave cavities [17], the lack of direct experimental
evidence in quantum systems for the effect of individual scarred wave functions
on directly observable phenomena was the motivation of our recent experiments
on quantum chaos [18]. Our aim was to create a chaotic stadium for electrons
in the quantum regime. Our stadium consists of a wide quantum well, formed
from a GaAs/AlAs heterostructure grown by molecular beam epitaxy (MBE), see
Fig. 1. The GaAs quantum well is confined between two AlAs tunnel barriers,
sufficiently thin to allow the passage of a tunnel current. This allowed us to study
the eigenstates of the quantum well by measuring the peak in the current-voltage
curves, I(V'), a technique known as resonant tunnelling spectroscopy.

We exploit a remarkable property of MBE, namely that it can produce in-
terfaces which are flat to within about one atomic layer. These effectively act as
specular reflectors for incident electrons. Since the de Broglie wavelength of an
electron in these structures is typically 10 nm or more, the barrier has a quality
equivalent to a A/30 mirror or lens in optics. It is worth noting that astronomical
telescopes are regarded as of outstanding quality if they have A/10 optics!

An electron bouncing freely between the barriers of a quantum well has
periodic motion with a constant period in the absence of dissipative processes.
The application of a magnetic field makes the electron motion more complicated,
but if the field is applied perpendicular to the plane of the barriers, the motion
is still periodic, with a cyclotron motion superimposed upon the bouncing motion
from wall to wall. Even if the magnetic field is applied parallel to the barriers, the
motion is still periodic: i.e., at high fields, when the cyclotron radius is less than
the width of the well, the electron simply skips along the barrier wall; at lower
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fields, the electron still bounces periodically ofl both barriers, but with a curved
trajectory.

However, the magnetic field can induce chaotic motion when it is tilted at an
angle to the barriers [18-24]. In this case, the cyclotron motion becomes “scram-
bled up” with successive bounces off the barrier walls. It is easy to demonstrate the
existence of completely chaotic motion in this situation by generating Poincaré sec-
tions. This involves plotting successive values of the in-plane velocity components,
vz, Vy, as points in 2D space for successive hits on one of the barrier walls [18, 21].
At a sufficiently large angle of tilt, 8, from the normal to the barriers, the Poincaré
sections have a “dusty” appearance due to a random distribution of points [20].
Our chaotic stadium is formed by the two flat tunnel barriers and by an effectively
parabolic or gutter-shaped magnetic potential produced by the Lorentz force on
the electrons. The axis of the gutter must, of course, be set at an angle # # 0 or
90° to the two flat barrier walls to achieve chaotic conditions.

The Hamiltonian describing this system is straightforward, since the mag-
netic field is incorporated in the usual way by means of the magnetic vector po-
tential [18, 20]. The eflective-mass approximation is used to describe the motion
of the electron in the conduction band. Since we investigate electrons injected into
the quantum well through the tunnel barrier at quite high energies (up to around
0.5 eV) it is necessary to take into account the non-parabolicity of the conduction
band of the GaAs quantum well. The degree of non-parabolicity can be directly
measured by independent experiments at zero magnetic field. These experiments
measure the peaks in the current-voltage characteristics, I(V), corresponding to
resonant tunnelling into the discrete subbands of the quantum well. Comparison
with the calculated energy scparation of the subbands provides us with a measure
of the non-parabolicity effect [18].

The combination of flat barriers and well-defined magnetic potential pro-
vides what is in many respects an ideal stadium for studying chaos, since elastic
processes originating from imperfections in the device (e.g. impurities, interface
roughness) are essentially absent. However, the system has one drawback. Since
tunnelling electrons are injected into the quantum well at high energies, they
can relax their energy to the lattice by the emission of longitudinal optic (LO)
phonons [19]. GaAs is a relatively polar material, so that the emission time is less
than a picosecond. According to the uncertainty principle, this leads to an energy
level broadening of the quantum well states by about 5-6 meV. In our original
experiments, we employed wide quantum wells of width 60 and 120 nm [19-21].
In this case, the mean level separation is less than the linewidth. Hence, individ-
ual levels are not properly resolved and the effects of the chaotic motion reveal
themselves only as a weak modulation in the density of electron states. The mean
separation between levels can be increased by working with a narrower quantum
well, e.g. 20 nm, for which the individual levels are well-resolved. However, it is
necessary to work at much higher magnetic fields in this case, in order to maintain
the conditions of classical chaos. For this reason, our experiments [18] to investi-
gate the effects of scarring of individual and well-resolved eigenstates were carried
out using the pulsed mragnetic fields up to 50 tesla at the Institute of Solid State
Physics, University of Tokyo, in collaboration with N. Miura and T. Takamasu.
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- Before describing the principle results of our experiments, we note two other
recent experiments on quantum chaology in semiconductor spectra. Both of these
involve the measurements of the magnetoresistance of high mobility two-dimensio-
nal electron gas systems which are patterned by electron beam lithography (EBL).
Marcus et al. [4] fabricated a Bunimovich stadium in which the walls were formed
by a negatively-biased electron gate fabricated by EBL. The stadium incorpo-
rated two openings through which current passed and across which voltage was
measured. The magnetoresistance of this structure showed a complicated aperiodic
oscillatory structure. Weak periodic fluctuations were also observed and associated
with periodic unstable orbits. Weiss and co-workers [25] investigated the magne-
toresistance of an anti-dot superlattice, also formed by EBL. In this case, electrons
chaotically scattered by the antidots carry the current through the device, whereas
periodic states are bound to one or more antidots, and do not conduct [25, 26].
In both these experiments, the conductivity is measured in the linear regime, so
that transport occurs very close to the equilibrium chemical potential of the de-
generate 2DEG. Hence at low temperatures the mean free path of carriers is not
significantly inhibited by phonon emission and absorption processes, as in the case
of our resonant tunnelling device. On the other hand, the disadvantage of both
systems is that unpredictable scattering processes can mask effects arising from
chaos. Such scattering can arise through the presence of charged impurity scat-
tering or, perhaps more importantly, due to the limitation of EBL in defining
correctly-shaped stadia and antidot arrays; i.e. the stadium walls are not flat to
within a de Broglie wavelength. The experiments on EBL-fabricated stadia and
antidot arrays and our own work on tunnelling structures therefore complement
one another in some respects.

3. Experimental details

The resonant-tunnelling diode (RTD) structure shown in Fig. la is grown
by molecular beam epitaxy and processed into circular mesas with ohmic con-
tacts to the top and bottom doped layers. The two (Alg.4Gag s)As layers act as
330 meV high potential barriers to the motion of electrons through the device.
Under an applied bias voltage V/, electrons tunnel from the left-hand (emitter)
contact into the quantum well (QW) formed between the two (Alg.4Gag ¢)As bar-
rier layers (Fig. 1b). The electrons in the emitter form a two-dimensional electron
gas (2DEG), in which they are free to move in the plane of the barrier (y—z),
but confined within a narrow accumulation channel of width ~ 15 nm in the
z-direction. This spatial confinement quantises the energy associated with motion
along the z-direction. For the range of V considered here, only the lowest energy
level ¢, is populated. In our calculations, €y, is found using a simple model for the
potential variation through the device [18, 20].

When a magnetic field B is applied at an angle 6 to the z-direction (see inset)
the energy of electrons in the 2DEG associated with motion in the y—z plane is
quantised into Landau levels. Only the lowest Landau level is populated and the
total energy of the emitter bound state is esppg = €, + iBe cos 6/2m*. Electrons
in the QW are spatially confined by the two barriers and by the magnetic field.
This confinement quantises the total energy of an electron in the QW into discrete



Resonant Tunnelling Siudies of Chaos ... , 613

(a) . 3 L B
0§ |34 3 18 3 |2
£ £ |E[El £ [2lg] s e
3 2 <El & |[E|2 3 «

2x10"cm®  2x10%an®  Notintentionally doped  2x10"%m®  2x10"em?®
barriers

(b)

collector

Fig. 1. (a) Composition of the resonant-tunnelling diode used in our experiments, show-
ing layer thicknesses and concentrations of Si dopant. (b) Schematic variation of the
potential energy of an electron at the conduction band edge with position £ normal to
the layer interfaces. Inset: orientation of the tilted magnetic field.

energy levels ¢, (n = 1,2,3...). When V is increased, the emitter bound state
scans the quantised energy level spectrum of the QW. Resonant tunnelling from
the emitter into the n-th bound state of the QW occurs at the bias voltage for
which eaprg = €5,

Figure 2a shows the experimental dI/dV versus V characteristic for § = 40°
and B = 37 T. A regular series of conductance peaks is observed with average
voltage spacing AV =2 87 mV. A derivative plot is used to emphasise the resonant
peaks (arrowed). This is much greater than that expected from the mean level
spacing in the QW which suggests that the tunnel current is dominated by a subset
of levels. In the following section we consider the energy levels and eigenfunctions
of the states in the quantum well and use them to understand the form of the
current—voltage characteristics.

4. Analysis of the data and discussion

Under the conditions of our experiment, the quantised energy-level spectrum
corresponds to the regime of predominantly strong classical chaos [18]. The level
spectrum is shown in Fig. 3a. The density-of-states plot in Fig. 3b includes the
level broadening expected for LO phonon emission. Details of the calculations are
given elsewhere [20]. Close to the energy of the injected electrons (a~ 280 meV),
most individual energy levels produce well-resolved peaks in the density of levels
plot D(e). Periodic fluctuations in the density of levels can also be identified by
locating the minima (arrowed) between broad peaks in D(¢). These are associated
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Fig. 2. (a) Experimental dI/dV versus V plot measured for a 100 ym diameter mesa
resonant tunnelling diode at B = 37 T and 6 = 40°. The principal resonances are
approximately equally spaced in voltage, as indicated by the arrows. (b) Calculated
I(V) characteristic (top curve) and current contributions (middle and bottom curves)
due to transitions into individual eigenstates of the QW when 8 = 40°, B = 37 T.
Strong periodic resonant peaks in I(V) (arrowed) originate from the dominant current
contributions (middle curves) produced by tunnelling transitions into individual scarred
states with probability distributions in the z—z plane shown inset. These scarred states
are calculated at the peak of the current contributions and belong to the same sequence
shown in Fig. 3c. The remaining current contributions (lower curves) generate only weak
features in I(V).

with unstable but periodic orbits in the QW via the Gutzwiller trace formula [2].
As V is varied, resonant tunnelling into the energy levels €, of the QW might be
expected to produce an irregular sequence of peaks in the current—voltage char-
acteristic I(V'). Previous measurements on RTDs with 60 nm and 120 nm wide
QWs in magnetic fields up to 11 T, revealed quasiperiodic series of resonant peaks,
which were attributed to Gutzwiller fluctuations in the density of levels associated
with distinct unstable closed orbits in the QW [19, 21]. In these studies, the QWs
were too wide for individual energy levels to be resolved. However, our recent the-
oretical work [20] indicated that in certain regimes, the periodic tunnelling peaks
observed for these structures were due to regularly spaced subsets of individual
levels, whose eigenfunctions were scarred by particular closed orbits. In the present’
experiments, the QW is sufficiently narrow (22 nm) that individual levels can be
resolved, although a much higher magnetic field is needed to ensure classically
chaotic behaviour at ¢ = 40°.

"The current due to resonant tunnelling into the n-th state of the QW is
determined by the transition rate W, from the occupied emitter states into the



Resonant Tunnelling Studies of Chaos . .. 615

(a)

Il
LRI

an(arb. units) D (arb. units)

(c)
£n=280.90 meV, v=9 en=309.25 meV, v=10

Fig. 3. (a) Vertical lines: quantised energy levels ¢, calculated for the 22 nm wide QW
with V = 668 mV, B = 37 T, 8 = 40°. Solid curve: density of levels D(e) obtained
by broadening each energy level to a width of 6 meV consistent with the finite lifetime
of about 0.1 ps imposed by the emission of longitudinal optic phonons. Arrows show
successive minima in D{e) associated with Gutzwiller fluctuations produced by unstable
periodic orbits in the QW in which the electron makes two or three successive collisions
on the RH barrier for each collision on the LH barrier. These orbits also produce strong
scars in the wave functions corresponding to the subset of energy levels shown as vertical
dashed lines. Orbits and scar patterns are shown in (c). (b) Open circles: squared matrix
elements M2 for tunnelling transitions into quantised energy levels shown in (a). Closed
circles indicate matrix elements for transitions into a subset of individual scarred states,
two of which are shown in (c). (c) Probability density plots (white background = 0)
of scarred QW eigenfunctions corresponding to energy levels and quantum numbeis
v shown. Similar scar patterns are found in the wave functions corresponding to all
the energy levels shown as dashed lines in (a). The thick black vertical lines indicate
positions of barriers (thickness not to scale). Inset: orientation of magnetic field B in
the z—z plane. In our chosen gauge given by the vector potential A = (0,zBsinf —
zBcos8,0), the probability density depends only on the z- and z-coordinates (axes
inset). The trajectories of three distinct unstable periodic orbits which contribute to the
. scar patterns are shown projected on the £—z plane as solid continuous curves.
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almost empty QW state [20]. In the Bardeen transfer-Hamiltonian description of
resonant tunnelling, W, o M2, where the matrix element M, depends on the
overlap between the wave functions of the emitter and QW states in the tunnel
barrier. We have calculated the transition matrix elements using a simple, sepa-
rable wave function for the emitter bound state. The variation of M2 with energy
¢n is shown in Fig. 3b. The matrix elements for transitions into a subset of almost
equally-spaced energy levels (vertical dashed lines in Fig. 3a) are much larger than
for the remaining states. The reason for this can be seen by examining the prob-
ability distributions of the corresponding wave functions, two of which are shown
in Fig. 3c. These wave functions reveal remarkably clear scars of three distinct
closed orbits (overlaid) in which the electron makes either two or three succes-
sive collisions on the right hand (RH) barrier per period. The energies of these
scarred states can be accurately located using a Bohr-Sommerfeld quantization
of the classical action S(¢) = (v + ¢)h along the scarring orbits [20, 27, 28] (the
different orbits have almost the same classical action for given ¢), where ¢ =~ 1, and
the quantum number v gives the number of antinodes in the scar pattern along
the classical path [20]. The energy spacing Aep & 28.4 meV of the scarred states
and also of the Gutzwiller fluctuations in Fig. 3a, is very close to the expected
semiclassical value of h/Tp ~ 28.9 meV, obtained from the period Tp ~ 0.143 ps
of the scarring orbits. The strong spatial overlap between the emitter state and
the subset of scarred states is a direct consequence of the scarring, which localises
the probability density of the QW state in the vicinity of the classical orbit. For
unscarred states, the probability is more diffused and the overlap is much weaker.
In order to illustrate the striking difference in the forms of scarred and unscarred
wave functions, Fig. 4 shows an unscarred state at energy ¢ = 315.5 meV which
is the wave function probability map of the next-higher energy level adjacent to
the scarred state shown in Fig. 3c, right (309.25 meV). It has a strongly irregular
antinode pattern and shows no indication of scarring. The tunnelling probability
into this type of state is clearly much less than that into the scarred states, which
have a strong single antinode adjacent to the emitter (LH) barrier.

We note that the scarring phenomenon is particularly strong for the quantum
well in a tilted magnetic field due to special dynamical properties which are not
shared by atoms. In particular, the scarring orbits have small Lyapunov exponents
for a wide range of field strengths and orientation [29], and there are no spatially
closed but aperiodic orbits which are known to complicate the scar patterns of
hydrogenic atoms [12).

We now calculate the tunnelling characteristic from the transition rates stud-
ied above. Figure 4b shows the theoretical I(V') curve (top) together with the cur-
rent contributions due to transitions into individual states in the QW (middle and
lower). The dominant current contributions (middle curves) clearly originate from
transitions into scarred states (shown in inset) and generate strong resonant peaks
in I(V') (arrowed). The predicted peak spacing AV 22 94 mV is in good agreement
with the experimental results. This provides clear evidence that the observed res-
onant peaks originate from transitions into the subset of scarred states shown in
Figs. 3 and 4b. Note that transitions into other QW states produce no significant
visible resonant features. We stress that the large voltage spacing and periodic
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Fig. 4. Probability density plot of eigenstates for the 22 nm-wide quantum well at
energies (a) en = 309.25 meV and (b) en41 = 315.5 meV. The probability map of the
eigenstate shown in (a) is also shown in Fig. 3c and is scarred. The state shown in (b)
reveals no trace of scarring. Dark indicates high probability density. The thick vertical
lines represent the barriers, drawn to scale. The calculation is done at a bias voltage of
668 mV. The plots are drawn in the z—z plane, where the z-axis is perpendicular to
the confining barriers. A magnetic field of 37 T is applied in the z—z plane at an angle
of 40° to the z-axis. The figure also shows the egg-shaped distribution functions of the
lowest Landau level emitter states to the left of the left-hand barrier.

distribution of the observed resonant peaks exclude the possibility that they origi-
nate from transitions into adjacent energy levels in the QW. A quasi-selection rule
based on the periodic scarring of individual wave functions is essential to account
for the experimental data.

5. Conclusions

We have shown how the almost atomically-flat interfaces of MBE quantum
well structures, combined with high magnetic fields, can be used to create a new
type of stadium which allows us to directly probe the manifestations of the clas-
sically chaotic motion on the quantised states of the system. By measuring the
resonant tunnelling current—voltage characteristics of the device, we are able to
investigate the distribution of scarred eigenstates in a QW with strongly chaotic
electron dynamics. Energy- and momentum-conserving tunnelling transitions into
a subset of scarred states in the QW have been shown to generate dominant peaks
in I(V'), which provide direct experimental evidence for the periodic scarring of
individual wave functions in a nonintegrable quantum system [18]. To our knowl-
edge, this is the only quantum system in which a periodic effect originating from
individual scarred eigenstates is observed in experiment. The effect is clearly dis-
tinguishable from that due to Gutzwiller fluctuations in the density of energy
levels.

We note that much recent theoretical work on the quantum mechanics of
classically chaotic systems has focused on the universality of the energy level spec-
tra (see, for example, Ref. [2]). This work reveals beautiful agreement between the
energy level statistics of quantum chaotic systems and the predictions of random
maftrix theory. However, our experiments show clearly that physically-measurable
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properties such as the tunnel current flowing through a system depend not only
on the form of the energy level spectrum, but also critically on the spatial form
of the eigenfunctions. Perhaps theoreticians need to bear this point in mind when
considering the universality of quantum chaotic systems.
Finally, we note that recent work has shown that the ideas of quantum chaos
can be used to analyse the distribution of electric field intensity around fibre optic
* cables [30]. The strong analogy between quantum mechanical and optical interfer-
ence effects, and classical chaotic orbits and light rays suggests that our under-
standing of quantum chaology could find applications in new optical technologies,
such as fibre optic communications and photonics.
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