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The periodic rotations of a symmetric rigid body close to the flat mo-
tions are analytically determined. Their orbital stability is investigated. Cal-
culations are done up to the second order terms of a small parameter.
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1. Introduction

Let us consider a rigid body whose mass center moves in a circular or-
bit around a point gravitational center. This problem was studied by many au-
thors [1-4]. We assume that the body is symmetrical which allows us to reduce
the equations of motion by one degree of freedom (projection of absolute angular
velocity onto symmetry axis is constant of motion).

If moments of inertia are equal and projection of absolute angular velocity
onto symmetry axis is equal to zero then there exist the socalled flat periodic rota-
tions (symmetry axis lies in the orbital plane). Assuming that polar and equatorial
moments of inertia are almost equal and projection of the angular velocity onto
symmetry axis is small, Markeev [3] proved the existence of spatial periodic solu-
tions close to the flat ones. Maciejewski and Níedzíelska [5] adopted the method of
Markeev to solve a similar problem for a rigid body whose mass center is located
at the triangular libration point of the restricted three-body problem. They found
that some results of Markeev [3] are incorrect and they presented a new, revised
analysis. Authors of the above-mentioned papers only considered the particular
family of periodic solutions — solutions with the same period as the generating
motions. In this case basing on Poincaré's theory (Siegel and Moser [6]) they could
state that under some assumptions there exists exactly one such family.

The purpose of our paper is to find the family of periodic solutions close
to the flat rotations with a period close to the period of generating solution. We
inveStigate periodic solutions lying on the same energy level Surface as the gen-
erating motions. We also present the analysis of their orbital stability using the
method of local analysis in the neighborhood of the periodic solution (Brjuno [7]).
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2. Equations of motion and Periodic solutions

We assume that the center of mass 0 of a rigid body moves in a circular
orbit around the point gravitational center 0. We choose the time unit in such a
way that the orbital period is equal to one.

We assume that the orbit of the body lies in the XY-plane of the fixed
inertial reference frame ΟΧΥΖ (see Fig. 1). In order to describe its rotational
motion, we introduce two right handed orthonormal reference frames with origins
at the mass center of the rigid body. The x-axis of the orbital frame is directed
along the radius vector and the z-axis is parallel to the orbital angular momentum
vector. The second frame is the principal axis reference frame.

We parametrize the orientation of the principal reference frame with respect
to the orbital reference frame by Εuler angles q1, q2, q3 of the type 3-2-1. Let the
body possess an axis of dynamical symmetry. Without any loss of generality, we
assume it is the first principal axis (A, B, C are the principal moments of inertia
and consequently B = C). The Hamiltonian of the problem can be written in the
following form:

where p1 , p2 , p3 are generalized momenta conjugated with q 1 , q2, q3 and α = Α/B.
According to (1) q3 is a cyclic coordinate and 1 3 is a constant of motion.

We assume that A and B are almost equal (the body is almost symmetric)
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and p3 is small. Consequently, a small parameter μ can be introduced in the fol-
lowing manner:

The analysis was done up to the second order of the small values of μ. Therefore
the Hamiltonian function (1) takes the form

For μ = Ο there exist flat T0-periodic solutions of Hamilton's equation with ^Iamil-
tonian (3):

The aim of this work is determination and analysis of rotational motion
of the rigid body when μ Hamiltonian0however is sufficiently small. Applying Poincaré's
method (Siegel and Moser [6]) one can prove that if

then for μ small enough there exists a T-periodic solution of Hamiltonian equa-
tions with Hamiltonian (3). This solution lies on the same isoenergetic surface as
the generating solution (4), it is analytic with respect to μ and it tends to the
generating solution as μ —^ Ο.

This solution as well as its period can be given explicitly as power series of μ
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3. Orbital stability

The periodic solution (6) is evidently unstable in the Lapunov sense. We wíll
study its orbital stability using the method of normalization of the Hamiltonian
in a neighborhood of the periodic solution. The algorithm proposed by Brjuno [7]
consists of the following steps:

• introduction of the local coordinate system in a neighborhood of the periodic
solution,

• introduction of new independent variable (instead of time),

• expansion of Hamiltonian function in a neighborhood of the periodic solution
into the power series with respect to the coordinates,

• linear normalization and analysis of stability in linear approximation,

• nonlinear normalization and investigation of stability in resonant and non-
resonant cases.

In order to determine orbital stability of the periodic solution (6) we made
some canonical transformations. Since generating functions of these transforma-
tions have a complicated form, tley are not present here. In order not to introduce
too many symbols we denote new variables as primed but after transformation we
will use unprimed symbols, again.

First, we transform our solution (6) by means of the canonical transformation

to the standard form. In the new coordinates the solution (6) takes the following
form:

and Hamiltonian can be written as

where Ηl is a homogeneous polynomial of order 1 with respect to variables ϊ , q2, p2
and its coefficients are analytic with respect to μ

The terms of the second and third order, necessary for the further analysis,
are given below
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At first we consider the stability of the periodic solution in the linear approxima-
tion. From the linear Hamilton's equations

we separate a subsystem for q2 and P2 with the independent variable W1.

where Hamiltonian F is π-periodic in W1
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From the formal point of view in the system (17) instability may appear due to
the parametric resonance (i.e. when k|/Ω is an integer). however, in our case it
is impossible because of condition (5). Thus, for small μ the periodic solution (6)
is stable in linear approximation.

In order to study the influence of nonlinear terms we normalize H2 . Then
we introduce canonical variables I2 and W2 defined by

Ιn the new variables the Hamiltonian (8) may be written in the following form:

Ιn the formulae (21)—(23) σ, Αi and Βi are analytic functions of μ and

The explicit forms of the coefficients Αi, Bi are given in Appendix.
In order to ínvestigate stability in nonlinear sense we have to consider the

third and fourth order resonances. The resonance conditions can be written as

where n is the order of resonance.
From the form of the third order terms (22) one can state that the third

order resonances may appear when

Since the equation 3σ = 2 for small μ has no solution, only the first of the above
possibilities may be fulfilled. Solving the equation 3σ = —2 we obtain two reso-
nance curves
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The stability of our periodic solution in the third order resonance case depends on
the value of the resonant terms (Markeev [81)

If parameters Ω and μ lie on the curve (27) then B4 ^ 0 and the periodic solution
is orbitally unstable. For parameters lying on the resonant curve (26) B4 μ3 . In
order to determine the stability one should take into account terms of the order  μ3 .

If the third order resonances do not appear, Hamiltonian (20) can be trans-
formed, using the canonical transformations to the following form:

The coefficient r is connected with the appearance of the fourth order resonances.
If the fourth order resonance 4σ = -2 does not appear then r = 0, in the opposite
case r ~ μ .

Now we apply Kolmogorov-Αrnold—Moser (KAM) theory and its modifica-
tion [2, 9] to the resonant case. Since the quantity

is different from zero, the periodic solution is orbitally stable in the nonresonant
case as well as in the fourth order resonance case.

4. Conclusions

The family of periodic solutions close to the flat rotations was found. The
analysis of orbital stability for periodic solntions belonging to that family was
done. We found that the determined periodic solutions are orbitally stable for  all
values of Ω (for which they exist) except for those values of μ and Ω lying on one
branch of the third order resonance curve.

Appendix

Coefficients Ai , Bi of the normal form (22)
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