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The nonasymptotic critical properties of sound propagation are stud-
ied in compressible Ising system above Τ. In the present paper we analyse
a model where in addition to the coupling to two order-parameter fluctu-
ations tle sound mode couples linearly to the fluctuations of spin-energy
and lattice-energy densities. Both subsystems exchange energy with the rate
determined by the bare spin—lattice relaxation time: The total energy may
be conserved or not. The crossover between insulator-like behaviour

t-2αand metal-like behaviour ti t—(zv±α) in ultrasonic attenuation is investigated
according to the value of ultrasonic freqnency, the reduced temperature t,
bare relaxation times and various coupling constants.

PACS numbers: 05.70.Jk, 62.65.+k

In typical ultrasonic experiments near the magnetic phase transition temper-
ature we observe strong anomalies of sound attenuation in magnetic metals such as
some rare-earth metals, whereas in magnetic insulators only very weak anomaly is
observed [1, 2]. Many theories have been proposed to describe the strong anomaly
in various substances [3-6]. They assume that the sound mode is coupled to two
spin fluctuations above Τ . On the other hand, the weak anomalies have been
qualitatively explained by postulating the dominance of the linear coupling to the
spin-energy density [7]. In our recent study we have investigated a model where
both couplings were present [8]. Inn this paper we present more extensive discussion
of the problem including also the lattice energy mode and transfer of energy be-
tween spin and lattice subsystems. We consider the acoustic phonon Q coupled to
the scalar spin S and to the fluctuations of energy of spin and lattice subsystems.
The Hamiltonian of the elastically isotropic system may be specified as
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where eαβ(x) denotes the strain tensor and es(x) and eL(x) are the spin- and
lattice-energy densities, respectively. The symbols Cαβ stand for the bare elastic
constants; g, w, aw, fare the bare coupling constants, and CS and CL are the spin
and 1attice specific heats, respectively.

The dynamics of the system is described by the coupled Langevin equations

where , n, φ and ψ.are Gaussian white noises with variances related to the bare
damping terms Γ, ΓQ, (γS — λSV 2 ) and (γL — λL0 2 ) by the Einstein relations.

It is convenient to represent Eqs. (2)-(4) in functional form [9] with La-
grangian given by

where Γi(k) = γi -F λik 2 for i = S, L and S , Q, eS and éL are auxiliary "response"
fields. With the Lagrangian all correlation and response functions can be computed
as path integrals weighted with density exp L.

Next we apply series of Gaussian transformations

decoupling the sound mode from the energy density modes,
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decoupling eS, eI, and S 2 , where A, B, C... are frequency and wave-vector de-
pendent coefficient.

We then obtain expression for the acoustic self-energy

is a frequency-dependent effective spin—phonon coupling constant. The effective
spin Lagrangian used for calculation of the expectation value in (11) contains
strain- and energy density-mediated four-spin non-local interactions as a result
of transformations (7)—(10). From the acoustic self-energy the sound attenuation
coefficient can be easily found. Near the phase transition it can be written as

where Re and Im denote real and imaginary part of a function, t = T-Tc is the
reduced temperature and y = ?r1- z O is the reduced frequency with α, v and z
being the critical exponents. The scaling function Φ(y) in the "weak-coupling"
limit [51 can be written as
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Depending on the relative size of t, ΓS/CS, Γ, ΓL/CL and ω, Eq. (12) shows
many different regimes. Asymptotically i.e. for ω, t —> 0 strong singularity term
always dominates [3, 10]

It is rather unexpected that a similar singularity dominates also for high frequen-
cies, ώ = 1, where

This new behaviour can be obtained from the asymptotic behaviour by simple
replacement α —> —α and Φ —+ Φ -1 . The weak singularity term,

can be dominant for t > 	 only if there exists a frequency window ω =
ΓS/CS 	 Γ, with the crossover reduced temperature t c ross α ( Γ)1/(z^-α)
This regime is believed to take place in magnetic insulators [1, 2].
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