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A simple infinite-range model of axial quadrupolar glass is investigated
within the cavity-fields approach inside a pure state and a cluster of pure
states. Working at a level of a pure state, the nonlinear susceptibility is de-
rived. When a cluster of pure states is considered, all the known results of the
one-step replica-symmetry breaking approach are easily reproduced. Besides,
the nonlinear susceptibility and the stability conditions are obtained and re-
lated numerical results are presented. In this way the stability range of the
replica-symmetry breaking solution, quite difficult to be derived within the
replica method, is established on the purely physical ground. An interesting
feature is that, at any considered stage, the nonlinear susceptibility diverges
at a given temperature Tc where the quadrupolarization and the quadrupo-
lar glass order parameters are nonzero and finite. This may be interpreted
as a signal of a glassy phase transition not in the Landau sense.

PACS numbers: 05.20.-y, 64.60.Cn, 64.70.Pf, 75.10.Nr, 75.50.Lk

In recent years there has been a significant growth of interest in quadrupolar
glasses (QGs) or more general orientational glasses for which intensive éxperimen-
tal and theoretical studies [1-8] have been achieved, from the pioneering paper by
Sullivan et al. [3], in close analogy to SGs. The term “quadrupolar glass” refers
to the low-temperature phase of molecular crystals with randomly frozen orienta-
tions of the quadrupolar bearing molecules. The simplest example of a molecular
crystal possessing orientational disorder is a solid orthohydrogen—parahydrogen
mixture (o-p-Hz), with a concentration of o-I; species lower than 55%, in which
orthomolecules with rotational momentum equal to unity are dissolved in a matrix
of crystalline parahydrogen, whose molecules have zero angular momentum and
spherical symmetry. Other well-known systems are o—p-Ds crystals with low con-
centration of p-D3 molecules, Ar diluted with Ny molecules and (KBr);_;(KCN),-
type mixed crystals [1, 2]. Although the presence of randomness and frustration
makes these materials similar to SGs, the absence of reflection symmetry (2] gives
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rise to deviations from the conventional SG scheme and to a peculiar behaviour
of QGs.

From a theoretical point of view, there has not been yet a convincing theory
for these more complex glassy systems. In general, a study of QG properties,
based on realistic microscopic Hamiltonians, is a rather complicated task due to the
complexity of the involved interactions and it is very difficult to treat it more deeply
along this direction. Rather, it is certainly desirable and convenient to investigate
simplest models capturing the essential physics of real disordered systems. A simple
model along this line was proposed by Lutchinskaia et al. [4] for o—p-II; QG in
the spirit of the famous model of Sherrington and Kirkpatrick (SK) [9] for SGs.
The model, describing the glassy properties of a system of N quadrupoles with a
strong anisotropy in z-direction, is defined by the Hamiltonian

N
H= _% 3 Qi (1)
i,j=1

Here, Ji;’s are quenched random interactions between gquadrupoles located at
sites ¢ and j, @; = (Sf)2 — 2 is the zz-component of the molecular quadrupole
second-rank tensor and Sf = 0,1 is the z-component of the angular momen-
tum (pseudospin) of the molecule at site . With the model (1) it is assumed
that each quadrupole in the system is oriented along the distinguished z-axis. In
solid o—p-II, mixtures with a concentration a < 0.55 of o-II3, nuclear magnetic
resonance (NMR) experiments at a very low temperature [3] show evidence that
the local z-axes are just randomly oriented. In the following, we find convenient
to choose [10] the quadrupolar couplings as random variable taking two possible
values Jij = +J/v/N (we will assume J = 1) with the equal probability for +
signs.

The SK-like replica symmetric (RS) solution of the model (1) was obtained
in Ref. [4], where it was shown that the model exhibits a mixed phase with the
global quadrupolar orientation and QG order parameter increasing continuously
with decreasing temperature. The absence of the trivial solution for these order
parameters suggests that the glass regime is established gradually with decreasing
temperature without a phase transition in the Landau sense. This result, although
obtained on the ground of a simple model, appears to be in agreement with exper-
imental data [3]. The stability analysis [5] of RS solution shows that it becomes
unstable below a well-defined temperature 7Tc & 1.367 J/kp (kg is the Boltzmann
constant). Quite recently [6], the one-step of the replica-symmetry breaking (RSB)
using the Parisi ansatz [10] has been performed in a wide range of temperature
including T = 0. However a stability study of the RSB solution is prevented by
intrinsic mathematical difficulties of the replica formalism.

A new method, named “the cavity-fields approach” has been developed [10]
for SK model. This approach seems rather promising towards a proper description
of SG systems. It avoids the replica trick, relies on well-known mathematics and
deals with quantities having a transparent physical meaning, such as local mag-
netizations and random magnetic fields. In view of the limited space available for
the present paper we only briefly report the main results of a systematic study of
the axial QG model (1) using the cavity-fields approach (for more explanations



Cavily Fields Approach 1o Simple Pseudospin Model . .. 413

see Ref. [8]). We work inside a pure state and inside a cluster of pure states [10]
taking into account also the correlation eflects for large but finite N.

According to the main idea of the cavity-fields approach, we add a new
quadrupole Qo at site 0, so that the model (1) moves from N to (N+1) quadrupole
with Hamiltonian Hy41 = Hy ~ Qo Y, JoiQi, where Jo; = +1/v/N is the
random variable with the equal probability for & signs. The field

N
ho = E JoiQi, 2)
i=1
produced by a given configuration of N quadrupoles and acting on the site 0 once
the corresponding new quadrupole has been removed, is called the cavity field.

Proceeding in a strict analogy with the method described in Ref. [10] we get,
at the level of a pure state, the results equivalent to the RS treatment [4]. The cal-
culation of nonlinear susceptibility, at the level of a pure state, gives the limit of sta-
bility RS solution the same as that obtained in Ref. [5] by the De Almeida—Thouless
method [11]. Working within the cluster of pure states one obtains the equations
for the QG parameters ¢; and qo, global quadrupolarization m and breakpoint z
of the QG parameter Parisi function [10]. The results coincide with those given
in Ref. [6]. Within the cavity field approach ¢; and go are physically interpreted
as the Edwards—Anderson parameter for QG, i.e. ¢1 = (1/N) Zf/ (m#)? and the
interstate overlap, i.e. go = (1/N) 2}1\’ m¢m?, where m¢ and m¢ denotes local
quadrupolarizations in pure states a and b, respectively, which belong to the clus-
ter of states [10]. '

A stability condition of the RSB solutions [6] can be easily formulated, within
the cavity-fields method, by calculation of the nonlinear susceptibility xn for the
cluster of states [8]. The result for yn is

—X)2
= gl AL ()

4
% dz e_zz/z fjooo Vda;%e—yz/zzge69/ (2669 + 1) S
~o0 V2 =, %e—W/Z’Zg -

with Zo = 2e°+¢=% and 0 = B(y\/g1 = o + 2/T0) — & (2 —m — q1). Using
the numerical results for parameters m, q1, qo and z, already known from a
previous study [6], from the condition x;,l > 0or X > 0, we firstly find that
X vanishes exactly at the temperature T; = 1.367J/kg, where the ergodicity is
broken. Besides, in the region T' < T, the positivity of X is found to occur in
the interval of temperature T < T < T; with T} =~ 0.6377c. In this region
the RSB solution is stable. At 7' = T, the stability is broken again (X < 0 as
T < T*). In Fig. 1 the temperature dependence (T' dependence) of the quantity
X (4), i.e. the denominator of the nonlinear susceptibility for a cluster of states
is plotted. For a comparison the T dependence of X obtained inside a pure state
is also given. In the region of instability 7' < T, the RSB solution (see Fig. 1)
show a clear tendency towards the stability stronger than RS solution. Of course,
below the second temperature Ty of the stability breaking, the QG model (1)

Xnl
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Fig. 1. Plot of the nonlinear susceptibility denominator X as a function of the reduced
temperature kpT/J uccording to the present predictions of the cavity-fields approach
(the solid line). The dashed line refers to the RS solution, stable for T > T¢ and unstable
for T < T, with Tc = 1.367 J/ks.

should be investigate within the next stages of the cavity approach (a level of
superclusters [10]). In the light of the present numerical results, we expect that
the window of stability below T, will enlarge at any next stage.
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