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We show that the most characteristic properties of mesoscopic antifer-
romagnets can be explained in terms of the response on a spatially inhomo-
geneous perturbation. This concept allows to explain the dynamic properties
(quantum resonance, coherence and tunnelling rates) as well as static pertur-
bations which, for increasing size of au antiferromagnet, leads to a transition
from the quantum mechanical oscillating system to a classical antiferromag-
net with well defined Néel vectors.

PACS numbers: 75.10.Jm, 75.50.-y

Α classical antiferromagnet (AFM) can be characterised by a doubly degen-
erate ground state corresponding to different spin orientation in two sublattices.
Within this model, the transition probability between the two degenerate Néel
states induced by external perturbations in small AFM, has been estimated by
Barbara and Chudnowski [1]. It is not obvious whether this transition rate is
equivalent to "macroscopic quantum coherence" (MQC), i.e. the coherent transi-
tion between states which originate from coupling of the AFM grain to its envi-
ronment [2]. Experimental results, and here in particular the resonance observed
by Awschalom et al. [3] and also a puzzling interlayer coupling [4], indicate rather
oscillatory character of small AFM. In the original paper [3], the authors inter-
preted the experimental data within the tunnelling formalism but Garg [5] argues
that this resonance cannot correspond to a transition between the Néel states but
rather to a magnetic resonance of uncompensated magnetic moments.

To clarify this problem a systematic quantum-mechanical (QM) analysis is
needed. Some calculation has been recently done by Levine and Howard [6]. They
discuss a rigorous solution of Heisenberg AFM clusters but they do not consider
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any coupling of the cluster to the environment. As a consequence, their quan-
tum resonances, which they call MQC, cannot be related to MQC as defined by
Leggett [2].

In this paper we discuss the QM solution for a simple AFM cluster and we
consider possible perturbations. Time dependent flelds lead to resonant transitions
while the static perturbations, whicl correspond to a coupling to the environment,
lead to the formation of static staggered magnetisation with two possible equiva-
lent orientations, reflecting the transition from QM to the classical limit. Such an
analysis allows us to distinguish simple QM transitions between the ground- and
excited states, which we relate to Awschalom's resonance, and MQC within the
doubly degenerate ground state.

Tle crucial points of our considerations are: (i) only spatially inhomogeneous
fields can perturb the ground state of the ΑFMcluster and (ii) the induced mag-
netisation, μ(ri), has different spatial dstribution as compared to the perturbing
field Ηi = H(ri).

Our considerations are based on the analysis of 1D AFM strings with an even
number of spins. Tlis is a simplest AFM object where the influence of perturba-
tions can be analysed. The following Ι Ι amiltonian describes the exchange coupling,
J, and the magnetic anisotropy, D, caused by a non-Heiseυberg interspin coupling:

As au example, the resulting quantum energetic structure for N = 10 parti-
cles, and its dependence on the anisotropy parameter D is shown in the inset
to Fig. 1. It is characterised by a non-magnetic singlet ground state, (Si) = 0. The
magnetic anisotropy splits the flrst excited triplet state and, for axial anisotropy
(positive D), two singlets are the lowest states of the AFM grain. With increas

-ing magnetic anisotropy, the energetic distance, Δ, between the singlets decreases
approaching zero for Ising anisotropy (D/J = 1). Simultaneously, the energy gap
above these quasi-degenerate singlets increases. The dependence Δ, for two

different anisotropy parameter,D,is shown in Fig. 1. With increasing particle size,N,
the energy splitting, Δ , decreases as 1/N for Heisenberg coupling and much faster
for an axial anisotropy.

We consider the perturbations which are linear in the spin components

They do not lead to any fiest-order perturbation of the Μ = 0 ground state. Thus
a formation of local magnetic moments can originate from a second-order pertur-
bation only. The dominante effect is caused by an admixture of the first excited
triplet. The z-component of the spin operators Si,,z mixes the ground state with
the excited M = 0 state while the operators Si , + and S= , _ lead to an admixture of
111 2 = 1 states. The difference of the energy splittings leads to strong anisotropy
of the generalised magnetic susceptibility (see below).

For small perturbations the ground state energy changes with the square of
the matrix element
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Simultaneously, the local moments, μ^ h , are induced. Their characteristic spatial
distribution, is determined by a normalised vector σ as defined by . Eq. (3) to be
proportional to the matrix elements between the singlet ground and the excited
states. The induced magnetisation

is independent on the spatial distribution of perturbing flelds but on the projection
of the local fields on the characteristic vector H = Ho σ only. Since the ground
singlet state differs from the flrst excited triplet by the parity symmetry (due to
spatial cluster symmetry) the characteristic vector, o- , is antisymmetric. Thus only
an antisymmetric component of the local field leads to the formation of /i^h• For
lomogeneous -flelds H vanishes. The generalised susceptibility, Xg, is determined
by the second derivative of the energy gain ΔΕ = p 2 /Α, over the local field
amplitude, H . It increases with an increase in the cluster size thus the big AFM
cluster becomes unstable. Α small fluctuation can lead to the formation of a static
staggered magnetisation, ;ι. , i.e. to transition from QM to classical AFM.

Most interesting is the case if there is a coupling of magnetic moments, μch,
to an environment and μ ch (π) can induce the environment polarisation, π(μch)
(e.g. the hyperfine interaction or a spin coupling to another local moments). In
such a case, the total energy of the system (see Fig. 1b) consists of (i) the energy
of QM states, (ii) the energy needed for formation of the staggered magnetisation,
(iii) the coupling energy, and (iv) energy needed for polarisation of the

environment. The formation energy (ii) is determined by Χgμ2ch 1/N. It dominates
for small ΑFΜ cluster and is shown in Fig. 1b by the dashed line. The coupling
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energy (iii) is proportional to πμch,(π) N N. For big clusters, it leads to the sym-
metry breakdown, to an induction of the static Néel states and to the formation
of a barrier between them. The temperature dependent increase in the ground
state energy for big π originates from (iv) the increase in the energy needed for
polarisation of the environment.

The probability of the transition between two equivalent minima of the total
energy is strongly temperature and size dependent since both the thickness and
the height of the barrier increases with cluster size and with temperature decrease.
Without any detailed discussion of the type of perturbations which leads to the
transition, one can notice that the tunnelling rate (caused by time dependent fluc-
tuations) and the coherence rate (cased by an additional static perturbation which
does not commute with the staggered magnetisation) decreases exponentially with
the cluster size, i.e., the number of individual spin flips needed for the transition
between the minima. Analysing the transition probability one has to consider not
only the number and the probability of individual spin flips, but, in general, also
the probability of a simultaneous change of the environment polarisation. In the
case wlen the formation of the static staggered magnetisation is caused by a

effective hyperflne coupling [5], the transition probabilities are predominantly limited
by a small probability of the nuclear spin flips. Then the MQC probably cannot
be experimentally observed.

We suppose that the resonance observed by Awschalom [3] corresponds to
the energy distance Δ. As is shown in Fig. 1a, Δ decreases exponentially with
the size of the cluster which is the most characteristic feature of Awschalom's
resonance [1, 6]. The nature of the resonance does not correspond, however, to any
precession of a rotator but rather to an oscillation μ.ch. Therefore, the excitation
of such a resonance is possible by a spatially inhomogeneous field only. Strictly
speaking, the transition probability is proportional to the square of the projection
of the oscillating fleld on the characteristic vector.

The oscillating character of small AFM magnetic clusters helps us also to un-
derstand other puzzling effects. In particular, neutron diffraction investigations [4]
brought evidence of an interlayer correlation between ultrathin AFM layers across
intercalated diamagHetic layers of several ML thickness. There is no coupling mech-
anism which is strong enough to provide a static coupling, but a much weaker in-
teraction between similar AFM layers may provide a dynamic correlation among
oscillating resonators. Thermal neutrons are so fast that they monitor only the
momentary spin correlations.
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