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PHASE DIAGRAM OF SPIN-ORBITAL MODEL
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We show that the mean-field phase diagram of the realistic spin-orbital
model derived for a perovskite lattice in three dimensions consists of four
different classical magnetic phases which become degenerate at orbital de-
generacy. The quantum fluctuations are drastically enhanced and suppress
the classical long-range order, providing a new mechanism to stabilize a
quantum spin liquid near the multicritical point.
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Evidence is accumulating that orbital degrees of freedom play an essential
role in doped Mott-Hubbard insulators [1]. The propagation of a hole doped into
such systems is in general quite complex due to the excitonic excitations, as dis-
cussed recently for S = 1 Haldane gap systems [2]. Here we address two important
questions in the undoped systems: (i) the modification of the classical magnetic
order by the proximity of orbital degeneracy, and (ii) whether a qualitatively
new disordered state might be stabilized in three dimensions, similarly as in a
twodimensional (2D) model [3]. This is closely related to one of the fundamental
questions dscussed recently in localized magnetsm: under which circumslances
does classical order collapse due to enhanced quantum fluctuations? So far, quan-
tum fluctuations were shown to stabilize the disordered phase in three physical
situations: (i) in a bilayer Heisenbergs model with strong interplane interaction [4],
(ii) in a frustrated Heisenberg antiferromagnet (HAF) with long-range Jι—J2—J3
interactions [5], and (iii) in a 1/5 depleted frustrated square lattice [6]. We show
below that a similar instability towards a disordered phase occurs in a natural way
in the Mott-Hubbard insulators near an orbital degeneracy.

We consider the simplest undoped three-dimensional (3D) Mott-Aubbard
d9 system (Cu 2+ ions) in the limit of large Coulomb interaction U, where the
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charge fluctuations have been integrated out (starting from a multiband model
similar to that for high-Τc superconductors and eliminating the virtual transitions
to high-energy states, d9id9j 	 d8id10j°). Tle effective Hamiltonian includes two e g

orbitals (x 2 - y2 	|x), 3z2 —1 ~ | Ζ)), and the low-energy excitations then consist
of spin-flips, as in a HAF, and of orbital excitations. Although such a physical
situation has already been discussed by Kugel and Khomskii [7], the complete
Hamiltonian and its phase diagram have never been investigated.

We study the resulting spin-orbital model with Hamiltonian Η = Η1 +H2 +
I13 . Here Η1 describes antiferromagnetic (AF) superexchange interactions com-
peting with orbital interactions

where J = 4t 2 /U , and t is the lopping between |z) orbitals. The Hund rule
exchange, JH, in the d 8 excited states favours by its very nature ferromagnetic
order and gives in addition in leading order JH/U,

with n = JH/J. In Eqs. (1) and (2) Si refers to the spin at site i, while α labels
the cubic (x, y, z) axis. The orbital degrees of freedom are represented by

where ς are Pauli matrices acting as orbital pseudospin variables on the states
|x) and |4. The degeneracy of the two orbitals is lifted by a "crystal-field" term,

which can be associated with an uniaxial pressure along the z-axis. The superex-
change interactions in Η1 are strongly anisotropic due to the anisotropy in the hop-
ping parameters between the differently oriented e g orbitals: along the z-direction
a superexchange of 4J couples the | z) states ; while there is no coupling of the
| x) states as the superexchange involves the oxygens in the bridge positions. In
contrast, the interactions within the (x, y)-planes are 9J/4 and J/4 between two
|4 and two | Ζ) orbitals, respectively.

By making a mean-field approximation, one finds four classical phases (Fig. 1)
with a two-sublattice long-range order (Lß,O), which have their counterparts
in a 2D model [3]: (i) At large positive Εz , the spins are in 4 orbitals, the
(x, y) planes decouple, and we find a planar antiferiomagnet (AFxx) well known
from the cuprate superconductors. (ii) At large negative Ε z , the spins occupy | .z)
states, and the spin system is a 3D anisotropic antiferromagnet (AFzz). AFxx
and AFzz. are degenerate along the line Εz = Ο. (iii) At large JH/U, next to the
AFzz phase, a mixed-orbital (11eO1) phase is found, given at each site by |iσ)
cos θi kσ) + sin θ |zσ), with the sign of θ changing between the two sublattices.
The spins are ferromagnetic (FM) within (x, y) planes, and antiferromagnetic (AF)
along the z-axis. We note that a special case of the MOI phase, with the orbital
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staggering within the (x, y) planes like x 2 - z2 , y2 - z2, x 2 - z 2 , ... (cos ©i = -1/2),
was proposed by Kugel and Khomskii [7] to explain the planar FΜ order found
in KCuF3. (iv) At large JH/U and Dz > 0, another mixed-orbital (ΜOΙΙ) phase
is found, with the same orbital alternation, but AF spin order in the (x, y) planes
and FΜ order along the z-axis. All four phases are degenerate at the multicriti-
cal point N = (Ez, ,ΤΗ) = (0, 0), where the spins and/or orbitals may be rotated
freely. The best classical state is either a 3D antiferromagnet with a completely
frustrated orbital sector [consider (SiSi+δ) = -1/4 in Eq. (1)], or a disordered
spin system which gives the same energy per site (-3J) due to the orbital sector.
We note that the degeneracy lines of the different classical states in Fig. 1 are
qualitatively similar to the frustrated Heisenberg models [5, 6].

The collective excitations in each phase are straightforwardly calculated us-
ing a random phase approximation (RPA) in the Green function technique [8].
The number of modes doubles in comparison with the HAF, as the acoustic spin
modes are accompanied by optical modes which correspond to excitations in the
orbital sector. When the Μ point is approached, both longitudinal and transverse
orbital modes soften. As expected, the transverse modes are more important as
they provide the main contribution to the renormalization of ground state energy
and magnetic LRO parameter. We studied in detail their behaviour in both AF
phases with pure orbital character. In the AFxx phase the transverse orbital mode
softens along k = (π, 0, kz ) (with the lattice constant α = 1) and equivalent lines
in the Brillouin zone (BZ), regardless how these critical lines are approached. In
the AFzz phase the orbital mode softens along k = (kx , 0, 0) and equivalent lines.
Thus, one flnds  dispersionless modes at the ill point along particular lines in the
BZ. As we will show elsewhere [9], the modes exhibit a quadratic dependence on
k┴ when these lines are approached in the perpendicular direction which causes a
logarithmic divergence of the quantum corrections to the order parameter at the
M point. It may be expected that the quantum corrections diverge in a similar
way in the MOI and MOII phases, as indicated by the softening of the modes.
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The quantum corrections (δSz) to the order parameter in both AFxx and
AFzz phases are considerably larger than in a 2D HAF in a broad parameter
regime (see Fig. 2). Similarly as in the 2D model [3], LRO is destroyed by the
quantum fluctuations when the renormalized (Sz) vanishes, and a region where
none of the AF phases is stable opens up in Fig. I. Our preliminary results indicate
that a disordered phase with a spin gap stabilizes instead near the M point [9].
Thus, we conclude that orbital degeneracy provides a new mechanism to stabilize
a qnantum spin liquid in three dimensions.
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