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PHASE SEPARATION IN HUBHARD MODEL
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Tle Hartree—Fock ground-state phase diagram of the one-dimensional
Hubbard model is calculated in the μ—U plane, restricted to phases with
no charge density modulation. This allows antiferromagnetism, saturated
ferromagnetism, spiral spin density waves and a collinear structure with
unit cell Heisenbergs.The spiral phase is unstable against phase separation near
quarter-, half- and three-quarter-flling. For large U this occurs at hole (or
electron) doping of (3t/π2U)1/3  from half-filling.

PACS numbers: 75.10.Lp, 75.25.+z

1. Introduction

Although the exact ground state of the one-dimensional one-band Hubbard
model with nearest-neighbour hopping is well known [1], systematic Hartree-Fock
(HF) studies of the same model are still of value. They are correct in the limit
of large degeneracy, they represent an effective Hamiltonian in functional inte-
gral formalism, and they provide a toy model for understanding the magnetic
phases of two and three-dimensional systems (such as cuprate superconductors
and transition metal alloys). Such studies also raise suggestive connections with
state-selection problems in frustrated Heisenbergs magnets.

The present author has obtained the HF ground state phase diagram of the
one-dimensional nearest-neighbour Hubbard model [2]

for arbitrary band fllling n (0 < n < 2). The calculation was restricted to phases
without charge density modulation; subject to this restriction, the full n-U phase
diagram was obtained.

Tle work here extends these results to the grand canonical case, presenting
the μ-U phase diagram and the asymptotic form of the phase boundaries. Full
details of the theory are given in the above reference.
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2. Hartree—Fock phase diagram

The unrestricted HF approximation minimises the expectation value of the
Hubbard Hamiltonian (1) in the space of Slater determinants. These states are
ground states of a non-interacting many-electron system in a potential specified
by variational parameters.

We restrict consideration to the uniform phases, where the only spatial de-
pendence is in the local magnetisation directions, and to macroscopic phase sep-
aration. In the latter case two uniform phases are in equilibrium, separated by a
domain wall. There are two families of uniform phases:

• SSDW (spiral spin density wave, ΐ/—>\) of continnously varying wave
vector Q. This has limiting cases

Q = 0: FM (saturated ferromαgnetism, ↑↑↑↑).
Q = π: AFM (antiferromagnetism, ↑↓↑↓).

• DSDW (double spin density wave, or two interpenetrating antiferromagnetic
sublattices with Néel vectors canted at an angle 0, T/ /).

For each point (n, U) the energy of each family is minimised with respect to the
exchange splitting and the angle (Q or θ). The HF energy EHF(n, U) is the lower
of the minima for SSDW and DSDW..

The condition for stability against macroscopic phase separation is that
EHF(n, U) be a convex function of n, or equivalently that the chemical poten-
tial
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be an increasing function of n. If this does not hold, a Maxwell construction [3],
shown in Fig. 1a, determines the fraction of each phase.

The figure shows the generic picture for U > 8.71. For n1 < n < 1 (and
1 < n < 2 — n1) the HF ground state consists of a uniform AFM phase with
n = 1 in equilibrium with a hole-rich (electron-rich) uniform FM phase with
n = n1 (n = 2 - n1). The chemical potential is pinned within the AFM gap and
within the lower (upper) band of the FM phase. Additional carriers will simply
move the domain wall. A similar effect is seen in supercell calculations of collinear
configurations [4]. For n < n 1 (and 2 - n1 < n) the ground state is FΜ. Thus the
SSDW is always unstable against separation into AFM and FΜ phases. (Note that
the SSDW energy peels off from the FΜ energy, indicating Q > 0, only above n1.)
The situation is slightly different for U < 8.7t: near n = 1 the SSDW is unstable
against phase separation into an AFM phase and a SSDW of longer wavelength.

The previous paper [2] presented the phase diagram in the n-U plane. Fig-
ure 1b shows the phase diagram in the μ-U plane. The areas shown here are pure
phases, separated by second-οrder transitions (between FM and fmite-Q SSDW)
and first-order transitions (between SSDW and collinear DSDW, between SSDW
and AFM, and between FM and AFM). For large U, as a function of chemical
potential there are two discontinuities in filling factor and in wave number. As U
is decreased, further discontinuities appear (although only the DSDW phase has
been calculated).

3. Form of phase boundaries

We can compute the asymptotic form of the FΜ-AFM phase boundary for
large U. By expanding the HF energy of the AFM state at n = 1 we find the gap
to be

(This of course exceeds the Bethe Ansatz ground state energy -41n 2t 2 /U [5]).
Drawing a tangent to the FΜ energy —(21/π) sin nπ gives the form of the phase
boundary for large U as

4. Discussion

The full HF solution to the one-dimensional Hubbard model is more difficult
to compute, in general requiring a 4Νa dimensional minimisation. One might spec-
ulate on a possible devil's staircase for small U: tongues, such as that for DSDW,
would exist for all rational fillings. Similar behaviour is seen in the Falicov—Kimball
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model (where one spin state is immobile) [6]. For larger U (in the Hubbard model)
the tongues would disappear, thinning out the staircase. We would indeed ex-
pect the uniform SSDW phases to distort in such a way as to open a gap at the
Fermi surface; the DSDW can be seen in such a way [7]. The phase separation
seen here may appear in a microscopic form (as a soliton lattice) rather than the
macroscopic form discussed here. Realistic terms, absent in the one-band Hubbard
model, which suppresS long-wavelength charge fluctuations, would tend to prevent
macroscopic phase separation.

It is also interesting to note connections with the problem of state selec-
tion in frustrated Heisenbergs magnets. DSDW phases with varying Θ are strictly
degenerate in a classical Heisenbergs model; here it is the itinerant nature of the
magnetism which selects the collinear state.

We end by confessing that these results bear little relation to the true ground
state of the one-dimensional one-band Hubbard model, which does not break sym-
metry in this way. However, they may provide a useful starting point for the
Hubbard model in two and three dimensions and many-band Hubbard models in
one dimension.
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