Proceedings of the ICSC-F'96 Jaszowiec '96

# MOCVD OF HIGH QUALITY LuBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-δ</sub> THIN FILMS

#### S.V. SAMOYLENKOV, O.YU. GORBENKO, I.E. GRABOY, A.R. KAUL

Chemistry Department, Moscow State University, 119899 Moscow, Russia

## V.L. SVETCHNIKOV AND H.W. ZANDBERGEN

Nat. Center for HREM, Delft TU, Rotterdamsweg 137, 2628AL Delft, The Netherlands

Epitaxial LuBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub> films were prepared by flash evaporation MOCVD on LaAlO<sub>3</sub>, SrTiO<sub>3</sub>, LaSrGaO<sub>4</sub> and ZrO<sub>2</sub>(Y<sub>2</sub>O<sub>3</sub>) single crystalline substrates. The highest  $T_c$  and  $j_c$  (77 K, 100 Oe) values were 89 K,  $2.7 \times 10^6$  A/cm<sup>2</sup> (LaAlO<sub>3</sub>) and 88 K,  $1.5 \times 10^6$  A/cm<sup>2</sup> (SrTiO<sub>3</sub>) respectively. The occurrence of secondary phases inclusions in LuBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub> films correlates with the possibility of epitaxial relations with the film matrix or the substrate.

PACS numbers: 68.55.-a, 81.15.Hi

It is well known that single phase LuBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub> ceramics cannot be obtained. However, single crystals of LuBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub> were successfully grown by self-flux technique [1]. LuBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub> phase can be also obtained as a thin film by pulsed laser deposition (PLD) and MOCVD [2, 3]. Peculiarities of RBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub> phase with R<sup>3+</sup> of the smallest ionic radius (Lu<sup>3+</sup>) are important for better understanding of properties of the whole R-series. In the paper we report our recent results on structural and superconducting characteristics of LuBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub> thin films prepared by MOCVD.

Epitaxial LuBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub> films on LaAlO<sub>3</sub> (001), SrTiO<sub>3</sub> (001), LaSrGaO<sub>4</sub> (001) and ZrO<sub>2</sub>(Y<sub>2</sub>O<sub>3</sub>) (001) single crystal substrates were prepared by flash evaporation MOCVD as described elsewhere [3]. X-ray diffraction (XRD) study of the films (DRON-3M, SIEMENS D5000 diffractometers) was used to determine phase composition, orientation and lattice parameter c of LuBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub>. Cation stoichiometry was determined using EDX analysis and sputtered neutral mass spectrometry (SNMS) (Leybold INA-3). AC susceptibility measurements ( $\chi(T)$ ) were performed in the range of 10–100 K using APD Cryogenics magnetometer,  $j_c(T)$  dependences were found from the imaginary part of  $\chi(T)$  as described in [4]. Scanning electron microscopy (SEM) with Jeol JEM-2000 FXII was used to study the films surface morphology. Transmission electron microscopy (TEM) studies of the films were performed with a Philips CM30ST electron microscope operating

(243)

at 300 kV. Atomic force microscopy (AFM) experiments were carried out with NANOSCOPE.

It is widely known that  $j_c$ ,  $T_c$ , lattice parameter c and some other characteristics of YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub> thin films are strongly dependent on deposition temperature and  $p(O_2)$  [5-7]. The dependences of  $j_c(77 \text{ K})$  and c values of LuBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub> thin films prepared at  $T = 800^{\circ}$ C on LaAlO<sub>3</sub> (001) and SrTiO<sub>3</sub> (001) substrates on  $p(O_2)$  reveal the optimum value of  $1.05 \pm 0.10$  Tr in the investigated range of 0.82-1.5 Tr. The similar dependences were found for FWHM of (001) peaks and  $T_c$  values, however, the dependence is less profound for  $T_c$ , in agreement with the results of [5].

The increase in c parameter originates from a higher defect density in crystal structure of the film [6, 7]. The defect density increases with approaching growth conditions to the stability border of LuBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub> ( $p(O_2)$  lower than optimal) and with reducing of cation mobility during the growth ( $p(O_2)$  higher than optimal). The optimum  $p(O_2)$  is quite close to that of CuO/Cu<sub>2</sub>O equilibrium, the similar behaviour is known for YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub> [5].

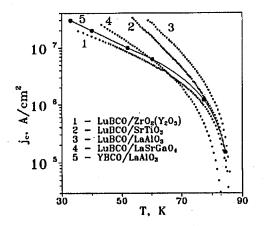
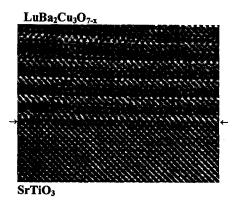
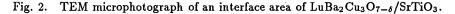





Fig. 1. Temperature dependences of  $j_c$  of LuBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub> thin films on different substrates and YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub> film on LaAlO<sub>3</sub> as a reference.

The temperature dependences of  $j_c$  of LuBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub> thin films on LaAlO<sub>3</sub> and SrTiO<sub>3</sub> grown under the optimum conditions are compared in Fig. 1. The higher  $j_c$  in the films on LaAlO<sub>3</sub> reflects the smaller lattice mismatch with LuBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub>. Using dependences of a and b parameters for RBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> on R<sup>3+</sup> radii, derived from structural data in [8], a = 3.80 Å and b = 3.87 Å were found for R = Lu. Thus, the mismatch of LuBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub> (a + b)/2 parameter with a pseudocubic lattice parameter of LaAlO<sub>3</sub>, SrTiO<sub>3</sub> and ZrO<sub>2</sub>(Y<sub>2</sub>O<sub>3</sub>) is 1.1%, 1.8% and 6% respectively. The increase in  $j_c$  with a temperature decrease is much steeper for LuBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub> films than for YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub> in agreement with the observations for PLD films [9]. The film on LaSrGaO<sub>4</sub> (a = 3.84 Å) was deposited under conditions optimized for LaAlO<sub>3</sub>. Some contribution of a-oriented phase deteriorating superconducting characteristics was detected by XRD in the film. A surface morphology of LuBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub> films on LaAlO<sub>3</sub> and SrTiO<sub>3</sub> substrates reveals two specific features: (1) an absence of *a*-oriented LuBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub> crystallites of the distinctive elongated shape on the film surface (in agreement with XRD study), irrespective of the film thickness and deposition  $p(O_2)$  used; (2) a significant disturbance of LuBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub> matrix flatness. According to AFM study, the outgrowths of LuBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub> observed were about 1000 Å in height at a film thickness of 3000 Å.





TEM study of films on LaAlO<sub>3</sub> and SrTiO<sub>3</sub> revealed an epitaxial film-substrate interface (Fig. 2) with lattice mismatch resolved by the misfit dislocations. Any deviations of a cation composition of the film from the stoichiometry of LuBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub> phase led to an appearance of inclusions of other phases. Usually observed secondary phases in the films were CuO, BaCuO<sub>2</sub>, Lu<sub>2</sub>O<sub>3</sub> and Lu<sub>2</sub>Cu<sub>2</sub>O<sub>5</sub>. The presence of all these phases was proved by XRD also, except for the Lu<sub>2</sub>Cu<sub>2</sub>O<sub>5</sub> inclusions observed by TEM only. An occurrence of the secondary phase inclusions depends on the possibility of epitaxial relations with LuBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub> matrix or substrate (Table). If no epitaxial relation takes place, the inclusion tends to appear on the film surface. Thus, protruding CuO precipitates of a size up to 1  $\mu$ m were often observed on the film surface, this means that CuO impurity tends to be pushed out of the growing film. A density of the LuBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub> outgrowths decreases drastically near CuO precipitates, probably an enhanced surface cation mobility takes place in the copper-enriched regions [10].

 $R_2O_3$  and  $R_2Cu_2O_5$  are generally considered to be non-equilibrium phases to  $RBa_2Cu_3O_{7-\delta}$  [11, 12]. To explain their presence in the film, the following reasons can be proposed: (1) a contribution of surface energy could change an equilibrium phase diagram; (2) non-equilibrium phases could be nucleated in the gas phase [13] and afterwards be stabilized kinetically due to the epitaxial relations with  $RBa_2Cu_3O_{7-\delta}$  (Fig. 3).

Concluding, the influence of the deposition  $p(O_2)$  conditions on the properties of LuBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub> films is rather similar to that in the case of YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub> films. The occurrence and orientation of secondary phases inclusions in

## TABLE

Secondary phases, their occurrence and epitaxial relations to  $LuBa_2Cu_3O_{7-\delta}$  or substrate (LaAlO<sub>3</sub>).

| Phase                                          | Syngony, lattice<br>parameters | Occurrence          | Orientation               |
|------------------------------------------------|--------------------------------|---------------------|---------------------------|
| CuO                                            | monoclinic, $a = 4.685$ Å,     | film surface        | random                    |
|                                                | b = 3.423 Å, $c = 5.132$ Å,    |                     |                           |
|                                                | $\beta = 99.52^{\circ}$        |                     |                           |
| BaCuO <sub>2</sub>                             | cubic, $a = 18.285 \text{ Å}$  | film surface        | no data                   |
|                                                |                                | or inside           |                           |
|                                                |                                | LuBCO matrix        |                           |
| Lu <sub>2</sub> O <sub>3</sub>                 | cubic,                         | film-substrate      | (001) <sub>LuBCO</sub>    |
|                                                | a = 10.39 Å                    | interface or inside | $   (001)_{Lu_2O_3},$     |
|                                                |                                | LuBCO matrix        | (100) <sub>LuBCO</sub>    |
|                                                |                                |                     | $\  (110)_{Lu_2O_3}$      |
| Lu <sub>2</sub> Cu <sub>2</sub> O <sub>5</sub> | orthorhombic,                  | film-substrate      | $(01-1)_{LaAlO_3}$        |
|                                                | a = 10.698 Å,                  | interface           | $   (001)_{Lu_2Cu_2O_5},$ |
|                                                | b = 3.4102 Å,                  |                     | $(011)_{LaAlO_3}$         |
|                                                | c = 12.358 Å                   |                     | $   (013)_{Lu_2Cu_2O_5}$  |

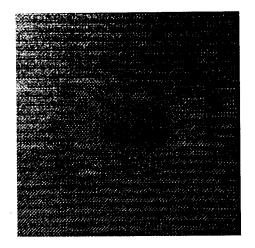



Fig. 3. Coherent  $Lu_2O_3$  inclusion in the matrix of  $LuBa_2Cu_3O_{7-\delta}$  film.

 $LuBa_2Cu_3O_{7-\delta}$  films correlate with a possibility of epitaxial relations with  $LuBa_2Cu_3O_{7-\delta}$  matrix or the substrate.

This work was supported by INTAS program (grant 93-936), RFBR (grant 96-03-33027) and Russian National Program on HTSC (grant 93-045). S.V.S. acknowledges the support of ISSEP. Prof. M. Berkowski is acknowledged for supplying us with LaSrGaO<sub>4</sub> substrates.

#### References

- J.Z. Liu, L. Zhang, M.D. Lan, R.N. Shelton, M.J. Fluss, Phys. Rev. B 46, 9123 (1992).
- [2] P. Schwab, X.Z. Wang, D. Bauerle, Appl. Phys. Lett. 60, 2023 (1992).
- [3] S.V. Samoylenkov, O.Yu. Gorbenko, I.E. Graboy, A.R. Kaul, Yu.D. Tretyakov, J. Mater. Chem. 6, 623 (1996).
- [4] J.Z. Sun, M.J. Scharen, L.C. Bourne, J.R. Schrieffer, Phys. Rev. B 44, 5275 (1991).
- [5] II. Yamane, M. Hasei, H. Kurosawa, T. Hirai, K. Watanabe, N. Kobayashi, Y. Muto, in: *High T<sub>c</sub> Superconductor Thin Films*, Ed. L. Correra, Elsevier, North-Holland, Amsterdam 1992, p. 319.
- [6] J. Ye, K. Nakamura, Phys. Rev. B 50, 7099 (1994).
- [7] M. Kawasaki, M. Nantoh, MRS Bull. 19, 33 (1994).
- [8] G.D. Chryssikos, E.I. Kamitos, J.A. Kapoutsis, A.P. Patsis, V. Phycharis, A. Koufoudakis, Ch. Mitros, G. Kallias, E. Gamari-Seale, D. Niarchos, *Physica C* 254, 44 (1995).
- [9] R. Pinto, K.I. Gnanasekar, H.V. Keer, A.S. Tamhane, L.C. Gupta, R. Vijayaraghavan, Physica C 227, 120 (1994).
- [10] O.Yu. Gorbenko, A.R. Kaul, Yu.D. Tretyakov, V.I. Scritny, S.A. Pozigun, V.A. Alekseev, *Physica C* 190, 180 (1991).
- [11] E.L. Brosha, F.H. Garzon, I.D. Raistrick, P.K. Davies, J. Am. Ceram. Soc. 78, 1745 (1995).
- [12] B.T. Ahn, V.Y. Lee, R. Beyers, T.M. Gür, R.A. Huggins, Physica C 167, 529 (1990).
- [13] O.Yu. Gorbenko, W. Decker, G. Wahl, J. Phys. (France) IV Coll. C3 3, 25 (1993).