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Perturbation methods are generally used for solving wave operator equa-
tions associated with the determination of effective Hamiltonians. In many
cases the standard Rayleigh—Schrödinger and Brillouin—Wigner series either
converge slowly or diverge. Therefore it is necessary to modify or to renor-
malize the standard wave equations. For that purpose derivative and conver-
gence superoperators within the Ralyeigh—Schrödinger and Brillouin—Wigner
formalisms were introduced. A new efficient approximation for convergence
superoperators is investigated in this paper. Its application to a model system
of N non-interacting molecules shows that this approximation can overcome
convergence difficulties.

PACS numbers: 31.15.Md

1. Introduction

The aim of this paper is to contribute to convergence studies in quantum
perturbation theory [1, 2]. The convergence properties of the standard Rayleigh-
Schrödinger and Brillouin-Wigner perturbation expansions are slow and for many
systems the series diverge. In order to overcome the convergence difficulties many
methods have been developed, for example, infinite summations, Padé approxima-
tions, diagrammatic expansions and infinite partial summations to all orders that,
however, cannot be considered as the final development of the theory.

A powerful approach is to use derivative and convergence superoperators
introduced by Durand et al. [3]. These superoperators enable us to investigate
and extend the convergence properties of the standard Rayleigh-Schrödinger and
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Brillouin—Wigner schemes. However, the direct use of these superoperators in
solving wave operator equation, associated with the determination of an effec-
tive Hamiltonian, implies difficult operator inversions. In order to avoid them it is
necessary to use an approximation. In this article we propose a new approximation
of the convergence superoperator. Its efficiency is tested on a numerical example
and a model system of N non-interacting molecules.

2. The method

Let us assume that the Hamiltonian H is partitioned into the unperturbed
Hamiltonian H0 and a perturbation V

The Hilbert space is split into a finite n-dimensional model space, which is spanned
by a set of eigenvectors of H0, and the outer space. Two projection operators P0
and Q 0 , with the property P0 + Q 0 = 1, are associated with these two spaces.
In this paper we have in view to solve the Schrödinger equation for molecules
by the configuration interaction (CI) method. In this method a finite number of
atomic orbitals generates a finite number of electronic configurations, therefore
both the outer space and the entire Hilbert space have finite dimensions and all
operators and superoperators are represented by finite matrices. In the following,
operators and superoperators will be represented by roman and calligraphic letters,
respectively. Let us consider the Schrödinger equation

The exact solutions |Ψi) can be written as

where Ω is the wave operator [2]. The result of the action of Ω on an unperturbed
state |i) is |Ψi ), and Ω obeys the intermediate normalization

Using Eqs. (3) and (4) the Schrödinger equation (2) can be transformed into the
basic wave operator equation [4, 5]

The importance of this equation, which depends quadratically on Ω , has been
recently stressed by Löwdin [6], who advocates new investigations of this non
linear equation. This paper provides new tools for solving Eq. (5). Equation (5)
can also be written in the form

Equation (6) generalizes the Schrödinger equation for n eigenvalues. The effective
Hamiltonian in Eq. (6) is written

Hell is defined within the model space and provides n exact eigenvalues. It is useful
to define the reduced wave operator X by writing
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Multiplying Eq. (5) from the left by Q 0 and from the right by P0 and using
expression (8), Eq. (5) can be written in the following form:

Equation (9) can be transformed into perturbative wave operator expressions which
can always be written in the form

where the operator f(X) is a function of X [5]. The two most basic expressions
of f(X) are associated with the Rayleigh—Schrödinger (RS) and Brillouin—Wigner
(BW) schemes. In the case of a one-dimensional space, f(X) is given by

for the BW scheme. E Q xo in (11) is a short hand notation for the inversion of the
projected operator Q0(E0 — H0)Q0 in the outer space. E0 in (11) is the zero order
energy, i.e., the energy of the unperturbed state, and E in (12) is the exact energy.
For greater values of n, the expressions of f(X) that generalize (11) and (12) can
be found in Ref. [7]. The standard RS and BW perturbation expansions arise from
the iterative solutions of (10). Unfortunately, the series very often converge slowly
or diverge. In order to avoid these difficulties Eq. (10) has to be modified [3].
The general idea is to transform the wave operator equation (10) with the aim
to reduce as much as possible the dependence of f(X) on X. This can be done
formally by introducing a superoperator A acting in the vectorial space of all
operators coupling the model space and the outer space. Subtracting AX from
both sides of Eq. (10) leads to the modified wave operator equation

When A = O this equation reduces to the standard perturbation expression (10).
The best choice of A is associated with the Newton—Raphson solution of Eq. (10).
For that purpose Eq. (10) is linearized in the neighborhood of X

where AX is a small variation of X and A is the derivative superoperator act-
ing in the vectorial space of all operators which couple the model space and the
outer space. A generalizes the concept of derivative f'(x) associated with the
Newton—Raphson solution of the algebraic equation x = f(x). Expressions of A
within the RS and BW schemes can be found in Ref. [7]. The iterative solution
of Eq. (13) defines a quadratically convergent Newton—Raphson procedure. Equa-
tion (13) can be also written in the form

where C is the convergence superoperator



In this paper we propose another approximation of C. Let us write

where A is the exact derivative superoperator and A0 is a reasonable approximation
of A. The convergence superoperator can be expanded in terms of AA

If we take A0 = 0, expression (20) reduces to the polynomial form (17). In standard
perturbation theory the convergence pattern associated with the iterative solution
of Eq. (10) depends on the eigenvalues of A. If their moduli are small with respect
to 1 then the RS and BW perturbation series converge, but if they are close
to 1, convergence difficulties appear. In our approach the convergence properties of
expansion (19) have to be discussed in terms of the eigenvalues of the superoperator
ΔA , the moduli of which must remain as small as possible with respect to 1.1—A o
The best choice is to choose A0 as close as possible to A under the constraint
that one must be able to invert 1 — A0. There are many efficient ways to do
that. The Brillouin--Wigner approach is especially attractive since the inversion
of superoperators reduce to the inversion of operators. This scheme will be used
in the next section in the two numerical applications. For large CI calculations
the almost band structure of the H matrix makes useful the introduction of an
intermediate space which greatly improves the convergence properties [8]. These
developments are far beyond the scope of this paper.

3. Numerical illustration and discussion
The convergence properties discussed above are presented on a purely nu-

merical example and for a model system of N non-interacting molecules which is
frequently used as a benchmark for investigating the convergence properties of CI
methods [9].

3.1. Numerical example
The components of the Hamiltonian matrix are given by Hij = i, if i = j

and Hij = λ, if i # j, for i, j = 1, 2, ...N. The calculation were done with λ = 0.6
and N = 100. Table I presents the results obtained for the lowest eigenvalue E1 .
The two lowest eigenvalues E 1 , E2, are investigated simultaneously in Table IL
The comparison with the Newton—Raphson procedure shows that the convergence
properties are significantly improved by adding the first order term in expres-
sion (19).
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TABLE I
Energies E1 obtained by the iterative solution of Eq. (15)
(N = 100) using three different C operators.

TABLE II
Energies E1 and E2 obtained by the iterative solution of Eq. (15).
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3.2. N non-interacting molecules (N = 8)

The description of this model system can be found in Ref. [7]. We assume
that the first N-1 molecules are identical and that their matrix representation in
the basis of the Hartree—Fock ground state and of the first excited state is given
by A, the matrix representation for the N-th molecule is given by B (arbitrary
units)

The size of the full CI matrix is 2N. It is obtained by the tensorial product of N — 1
times the matrix A by the matrix B. For this model system the total energies are
known. For the ground state and for the first excited state they are given by

When all molecules are identical (p = 1), the energy of the ground state is far from
the energy of the first excited state. Results for the ground state with a = 0.3 and
p = 1 are given in Table III. If p O the two lowest states are almost degenerate.
The results corresponding to this case (a = 0.3, p = 0) which is relevant to a
two-dimensional effective Hamiltonian are reported in Table IV. From the com-
parison of Tables III and IV with Tables I and II it is seen that in both examples
(one and two eigenvalues) the convergence properties are quite similar. An ex-
tended numerical study by varying the parameters A and p has confirmed the

TABLE III
Energy of the ground state E1 for a model
system of eight identical non-interacting
molecules obtained by the iterative solution
of Eq. (15) using three different C operators,
(a=0.3, p=1).
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TABLE IV
Energy of the ground state E 1 and of the first excited state E2 for a model system
of eight molecules obtained by iterative solution of Eq. (15) using three different
C operators, (A = 0.3, and p =0).

validity of the convergence scheme presented in this paper. In all cases the approx-
imation C = 1.—A 0 -i- 1—Ao Δ A 1 i is efficient. It provides results which converge
almost as well as the Newton—Raphson procedure using the exact expression of
the convergence operator.

The approximation proposed in this paper seems to be more efficient than
the polynomial approximation used in Ref. [3]. This work should be considered as
a pilot study checking its efficiency on simple model systems. For actual systems
with large CI matrix representations the direct inversion 1—A0 is an impossible
task. As mentioned above, the solution could replace the superoperator A0 by its
projection in a reduced vectorial space of a lower dimension. Work in this direction
is in progress.
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