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Three spatially extended one-dimensional dynamical systems are exam-
ined by numerical simulations and the time-delay technique is applied to find
their dynamics at different positions in space. On the basis of this technique
the correlation dimension is calculated from time series obtained at differ-
ent positions. It is found that the value of the correlation dimension may
vary from one position to another, reflecting the spatial inhomogeneity of
the system.

PACS numbers: 05.45.+b

The time-delay reconstruction method, proposed some time ago by Takens [1]
on the basis of an embedding theorem, allows a characterization of a dynamical
system from a time series of a single component of the state. Reconstruction of the
original attractor by this technique can be done for systems with a finite number of
degrees of freedom, like iterated maps or systems described by ordinary differential
equations. It has also been used successfully for some infinite-order systems [2].
Recently, it has been shown [3] that in the case of infinite-order spatially extended
systems described by partial differential equations, reconstructions of the attractor
from the time series obtained at different points of the space may give different
results. It is especially expected, when the system is spatially inhomogeneous, be-
cause of, for example, boundaries or existence of spatially coherent structures. For
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such a system the time-delay reconstruction does not seem to be a useful method
to find a global measure of the dynamics, e.g., a global (one for the whole system)
value of the correlation dimension or of the largest Lyapunov exponent. However,
the method may still be used to characterize local properties of the attractor. In
the paper [3], the time-delay technique was applied to find the values of the local
correlation dimension from the time series taken at different positions of the space.
It was shown that these values may vary from one position to another. It suggests
that the correlation dimension as a function of position may be a good measure
of a spatial inhomogeneity of the system. Having all this in mind, we have exam-
ined, by numerical simulations, three spatially extended, one-dimensional systems,
the first two of them, a Landau—Lifshitz equation and a driven damped nonlinear
Schrödinger equation, containing the spatially coherent structure in the form of a

single solitary wave (this solitary wave can propagate for the first system and it
is static for the second one), and the third, a Ginzburg—Landau equation-system
without the solitary wave. We have examined the spatial inhomogeneity of these
systems by a Fourier transform in non-chaotic states and by the estimation of the
local correlation dimension for the chaotic ones.

The first system under investigation is a model of the uniaxial ferromagnet
treated as a one-dimensional continuous chain of magnetic vectors M (i = M0)
extended along the x axis of a Cartesian system. It is assumed that the uniaxial
anisotropy axis is parallel to the z direction and that the external oscillating field
HZ = H0 cosω0 t is applied. The dynamics of the magnetization can be described
by the following Landau—Lifshitz system of equations for the it = M/M0 vector
components [41:

and -y(> 0) is the gyromagnetic ratio, a is the Gilbert damping constant, K is
the uniaxial anisotropy constant, 4πMM is the demagnetizing field. A dot over
the symbols denotes differentiation over the time and x is measured in units of
VA/K, where A is the exchange constant.

The second system is a driven damped nonlinear Schrödinger equation in
the following form [5]:
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The forcing field is characterized by the amplitude a and frequency co0 and the
dissipation is measured by the b parameter. All these parameters are real numbers.

The third system is a complex Ginzburg—Landau equation [6-9] in the fol-
lowing form:

where the parameters c 0 , c 1 and c2 are real numbers.
The system of equations (1) and the equations (3) and (4) were solved numer-

ically by means of the 3rd order Adams—Bashforth—Moulton predictor-corrector
method with a fixed time step At = 0.002 ns, At = 0.01, and At = 0.09 (arbitrary
units), respectively. For Eqs. (1) the pinning was assumed, while for Eqs. (3, 4),
the two types of boundary conditions, pinned and periodic, were applied. The nu-
merical integration was performed in a domain —L < x < L, with L = 10 (in units
of /A/K), L= 8.1π, L = 300 (arbitrary units), for Eqs. (1), (3), (4), respectively
and the second space derivatives were calculated by a pseudo-spectral method [10]
for all variables except μz for which a 6th order finite difference method was ap-
plied. A brief discussion of a validation of this method for each system is given
in previous papers [4, 12, 13]. As an initial condition a single Bloch domain wall
in the form μx(x, 0) = 0, μy(x, 0) = sech(x), p, = — tanh(x) [11], was taken for
Eqs. (1) and a single soliton, ψ(x, 0) = 0.6sech(0.6x) exp(—iπ/2) [5], for Eq. (3).
For Eq. (4) a random initial space distribution of the amplitude 101 was assumed.
For the three systems the integration was performed long enough to reach an at-
tractor and an initial transient was discarded before analyzing the data. The fol-
lowing parameters were fixed during the numerical simulations: ω0 = 20 GHz, γ =
1.76 x 10 7 1/(s Oe), 4πM0 = 1700 Oe, 2K/M0 = 80 Oe, a = 0.01 for Eqs. (1),
ω0 = 1.0, b = 0.1 (all in arbitrary units) for Eq. (3), and c0 = 0.2, c1 = —1.0
for Eq. (4). For the first two systems the amplitudes of the driving fields, H 0 for
Eqs. (1) and a for Eq. (3), were varied. In the case of Eq. (4) the nonlinearity
parameter c2 was treated as the driving field and also was varied. The character of
the solutions was examined on the basis of time series obtained at 129 grid points
numbered from —64 to 64, so that the point number O referred to the center of the
particular system.

For all systems considered, roads to chaos were analyzed and then the chaotic
states were examined with increasing amplitudes of the driving fields. Complete
results are available in a series of previous papers [4, 12, 13]. Here we recapitu-
late some of them altogether, with emphasizing the dependence of the solutions
on positions in space. Let us start with the first two systems. In the case of
Eqs. (1) the system approaches the chaotic state after a sequence of periodic and
quasi-periodic oscillations, while in the case of Eq. (3), we have a typical process
of period-doubling bifurcations. In both cases, as long as the system is in periodic
state, the character of the oscillations in the particular positions changes similarly
with increasing distance from the system center (in the periodic regime the sin-
gle solitary wave existing in both systems is static, so the center of the systems
coincide with the center of the solitary wave). In the case of Eqs. (1) the oscilla-
tions in the center of the system are purely sinusoidal (Fig. la), while beyond the
center, the successive higher harmonics appear and grow with increasing distance
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from the system center. Especially the amplitude of the second harmonic at 2ω0
increases gradually until it dominates over the first one at ω0. This process is
seen in Fig. 1, which shows the spectrums of the oscillations of the variable at
different space positions for H0 = 25 Oe. A similar process we have in the case of
Eq. (3), except that the oscillations in the system center are not purely sinusoidal,
so the spectrum of 101 in this position consists of a sequence of evenly spaced
harmonics (Fig. 2 [12]). Beyond the center, the amplitude of the first harmonic
decreases, while the amplitudes of some higher harmonics, especially of the sec-
ond one, increase with growing distance from the system center. The time wave
forms of the amplitude 101 of the solution of Eq. (3) for a = 0.135 at different
positions are depicted in Fig. 2. It is common for both systems that the greater
is the amplitude of the driving field, the amplitudes of the higher harmonics grow
faster with increasing distance from the system center. Moreover, the transient
time, after which the systems approach the periodic states, is longer for positions
more distant from the center.

Fig. 1. Spectrum of the first component p.. of the solution of Eqs. (1) for Ho = 25 Oe
at grid point number (a) 0, (b) 30, (c) 58.
Fig. 2. Time wave form of the amplitude |ψ|  of the solution of Eq. (3) for a = 0.135
at grid point number (a) 0, (b) 30, (c) 50. |ψ|denotes an average amplitude in a time
series.

When the amplitude of the driving field H0 exceeds H0 =32 Oe, the oscilla-
tions at the center of the system described by Eqs. (1) are still purely sinusoidal,
but beyond the center the motion is quasi-periodic, there appear new harmonics at
the frequencies 0.5ω0±ω' and 1.5ω0±ω  (where ω'= 0.42 GIIz is incommensurate
with ω0) the amplitudes of which grow with the distance from the wall center. It
means that the solution is 2-periodic with the base frequencies 0.5ω0 and w'. This
is illustrated by Fig. 3 for the first component p of the solution at grid point
number 58 and for H0 = 32.7 Oe.

The chaotic states appear for H0= 34.4 Oe and α=0.148 in the case
of Eqs. (1) and Eq. (3), respectively. In the chaotic regime a difference between
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Fig. 3. First component /i x of the solution of Eqs. (1) at grid point number 58 for
//o = 32.7 Oe. (a) Two-dimensional phase portrait μx (ti) vs. μx(ti + r) reconstructed
from a time series. Time between successive data is At = 0.004 ns, ti = iΔt, and a delay
time r = 0.22 ns. (b) Spectrum of μx.

the two systems appears important: the solitary wave existing in the system (1)
(domain wall) moves along the x axis, while the solitary wave of the system (3)
is still static and only its amplitude oscillates chaotically.

For Eq. (4), as long as 1 + c1c2 > 0, a homogeneous solution ψ =
c0 exp(—ic0 c2 t) was found to be an attractor. When 1 + c 1 c2 becomes nega-

tive (c2 > 1 in our simulation), the homogeneous solution looses its linear stability
and the system turns into a state of a "weak" chaos called a "phase turbulence".
When c2 ti 1.4, the system approaches a much "stronger" chaotic state called an
"amplitude turbulence". The phase turbulent state is characterized by small fluc-
tuations of the amplitude 101 around 0 . In the amplitude turbulent state the
system exhibits large amplitude fluctuations and "defects" — regions, where the
amplitude takes small values of nearly zero.

The spatial inhomogeneity of the all three systems was examined quantita-
tively by the estimation of the local correlation dimension Dc from time series
taken at different grid points. To calculate the correlation dimension, a modified
Grassberger-Procaccia algorithm [14] was used. It is based on the reconstruction
of the attractor by the time-delay technique. In the first step the set of N vectors
in m-dimensional space

was constructed from the time series x(ti), where to = iΔT (2 < i < N) and
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AT is the time between the successive data. Then M < N, reference vectors
were randomly chosen and about each of these vectors, it was found the radius
ε(j) of the smallest m-dimensional sphere containing exactly j vectors (1 < j <
N — 2K), where K is the number of vectors skipped at each side of the reference
vector to ensure that the vectors considered are sufficiently independent [15]). The
radius ε(j) was calculated using an Euclidean norm. The correlation dimension
was estimated as the slope of ln(j) versus ln[(ε(j))] within a certain scaling region,
in which this slope is well defined and may be calculated using a least-squares fit.
The angle brackets indicate averaging over all reference vectors. All the results
shown below were obtained using N = 10000, M = 400, and K = 10 vectors. A
large number of tests were carried out to find the proper values of the sampling
time ΔT and of the delay time T. Their values depended on the case and are listed
in captions of relevant figures. A criterion of choosing them was the best (linear in
a wide range) scaling region and a saturation with increasing embedding dimension
m [14]. Figure 4 shows the examples of the examination of this saturation for the

Fig. 4. Correlation dimension Dc as a function of embedding dimension m obtained
from the time series taken at the center of the systems for (a) μx(ti) variable of Eqs. (1)
with Ho = 40 Oe, ΔT = 0.04 ns, r = 4ΔT, (b) IψI(ti) variable of Eq. (3) with periodic
boundary conditions and a = 0.149, ΔT = 0.15, r = 4ΔT, (c) 01(t,) variable of Eq. (4)
with periodic boundary conditions and c2 = 1.25, ΔT = 3.6, r = 4ΔT. Error bars are
shown.
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three systems. The error of the values of the correlation dimension is estimated to
be about 2.5% (5% for Eq. (4)) in the chaotic states and it is probably smaller in
the periodic ones. To estimate this error the algorithm was run some times for the
same chosen values of the parameters and the half of the difference between the
highest and the smallest values of the correlation dimension obtained was taken
as the error.

The correlation dimension was found to be equal to 1 for all checked 1-periodic
states of Eqs. (1) and Eq. (3), and equal to 2 for 2-periodic states of Eqs. (1). Fig-
ure 5 depicts ln(j) versus ln[(ε(j))] for 1-periodic and 2-periodic states shown in
Figs. la, 4. The scaling regions are well defined in these cases and one can easily
find that the slopes have proper values, 1 and 2, respectively. These results con-

Fig. 5. Dependence of ln(j) on ln[(ε(j)/ε0)] (where c o is the smallest from the ε(j)
values) obtained for //o = 32.7 Oe from a time series x ( ti) at grid points number
(a) 0, (b) 58. Bars indicate the scaling regions. The values of the algorithm parameters
are: m = 30, ΔT = 0.032 ns, r = 4ΔT.

Fig. 6. Correlation dimension Dc for Eqs. (1) with H0 = 40 Oe as a function of position
along the x axis. The correlation dimension was obtained from time series μx(ti) with
the following values of the algorithm parameters: m = 40, ΔT = 0.04 ns, r = 4ΔT.
Error bars are shown. The dashed curve denotes the probability P(i) that the centre of
the wall is at grid point number i.



1050 A. Zubrzycki, A. Sukiennicki

firm what was previously obtained using Fourier transform and suggest that the
correlation dimension calculated, on the basis of the time-delay technique, from a
time series taken at one grid point is a good measure of the local properties of the
attractor. Therefore, it can be a tool to examine the spatial inhomogeneity of a
system, especially in the chaotic state, when the Fourier transform does not seem
to be useful. The results of using the local correlation dimension as such a tool

Fig. 7. Dependence of ln(j) on ln[(ε(j)/ε0)] (where c o is the smallest from the ε(j)
values) obtained for Ho = 40 Oe from a time series μx(ti) at grid points number
(a) 0 (Dc= 2.3), (b) 32 (Dc= 3.3). Bars indicate the scaling regions. The values
of the algorithm parameters are the same as in Fig. 6.

Fig. 8. Correlation dimension Dc for Eq. (3) with a = 0.149 as a function of position
along the x axis. The lower curve is related to the periodic boundary conditions and
the upper one — to the pinned boundary conditions. The correlation dimension was
obtained from time series|ψI(ti) with the following values of the algorithm parameters:
m = 40, ΔT = 0.15, r = 4ΔT. Error bars are shown.
Fig. 9. Correlation dimension Dc as a function of position along the x axis for Eq. (4)
with periodic boundary conditions and for 02 = 1.25 (squares), c2 = 3.0 (triangles). The
correlation dimension was obtained from time series |ψ| (ti) with the following values
of the algorithm parameters: m = 80, ΔT = 3.6 for c2 = 1.25 and ΔT = 0.18 for
c2 = 3.0, r = 4ΔT. The vertical size of the markers is related to the error.
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are shown in Figs. 6, 8, 9, which depict the correlation dimension as a function
of position along the x axis. Figure 6, depicts this function for Eqs. (1) and for
H0 = 40 Oe. For this value of the amplitude of the driving field the wall moves
back and forth within a small range of the space, the probability P(i) that the
center of the wall is at grid point number i is shown in Fig. 6 by a dashed curve.
From Fig. 6, a clear interrelation between the position of the wall and the value of
the local correlation dimension is seen, beyond the range of the wall residence the
value of the correlation dimension changes only very slightly from one position to
another, while within the wall and in its neighborhood significantly larger differ-
ences between the values of the correlation dimension at different positions occur.
Figure 7 shows ln(j) versus ln[(ε(j))] for two points with considerably different
values of the correlation dimension. In Fig. 8 the correlation dimension is seen as
a function of position along the x axis for Eq. (3) (a = 0.149) with periodic and
pinning boundary conditions. In these cases the interrelation between the position
of the solitary wave (which is placed at the center of the system) and the values
of the local correlation dimension correlation is also seen. Moreover, one can see
the influence of the boundaries on the value of the correlation dimension. Figure 9
depicts the correlation dimension as a function of position along the x axis for
Eq. (4), for two values of the nonlinearity parameter c2 = 1.25 (phase turbulence
regime) and c 2 = 3.0 (amplitude turbulence regime). It is seen that the attractors
are spatially homogeneous. Besides, the value of the correlation dimension is the
same (within an error) Dc 4.2 for both, the phase and amplitude turbulence
regimes. The same values of the correlation dimension were found for all checked
values of c2. Figure 9 was obtained for periodic boundary conditions, but quali-
tatively the same results were obtained for pinning boundary conditions, only the
value of the correlation dimension was larger, Dc = 4.5.

Conclusion

For the three systems the spatial inhomogeneity was examined on the ba-
sis of the Takens delay-time reconstruction method applied for different positions
in space. The systems described by the Landau—Lifshitz equation and the driven
damped nonlinear Schrödinger equation are found to be spatially non-uniform,
both in non-chaotic and chaotic states. It was found both by the Fourier trans-
form for the periodic and quasi-periodic states as well as by the calculation, using
time-delay method, of the local correlation dimension for the chaotic states. In
the case of these two systems the spatial inhomogeneity is mostly related to the
existence of spatially coherent structures in the form of solitary waves. On the
other hand, the third system described by the complex Ginzburg—Landau equa-
tion, which is the system without solitary waves, was found to be spatially uniform.

In conclusion, the reconstruction of the attractorby the time-delay method
may give qualitatively different results for time series obtained at different space
positions of the inhomogeneous spatially extended systems. "Reconstructed" at-
tractors do not reflect the global dynamics of such systems, but they allow one
to describe their local properties. In particular, the values of the local correlation
dimension may characterize the spatial inhomogeneity of the chaotic states.
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