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We generalize the standard attractive Hubbard, having an on-site pair
creation operator Qi = ai|ai|, to one with n components Qiα = aiα|aiα|, a =
1, 2, ... , n. In the limit n —> co we obtain the Ginzburg—Landau functional.
On this basis we explore the crossover from weak (BCS) to strong coupling
(Bose—Einstein condensation) superconductivity. The associated self-consis-
tent equations for the Ginzburg—Landau parameters are similar to those of
the T-matrix approach. The evolution of the band structure with increasing
interaction strength is studied and correlated with the behavior of the pair
propagator and the transition temperature. We find that the pairing inter-
action creates a new band which moves downwards in energy as the interac-
tion strength increases and separates into a lower Hubbard band when the
interaction strength becomes comparable to the band width. In the strong
coupling regime, a third band with small spectral weight is also found in
between the lower and upper Hubbard bands.

PACS numbers: 71.10.—w, 71.10.Fd, 71.27.-1-a, 74.20.—z

1. Introduction
The crossover from weak to strong coupling superconductivity in the attrac-

tive Hubbard model is a problem of considerable interest [1]. In the weak coupling
regime considerable progress has been made using the T-matrix approach [2]. In
particular, essential deviations from BCS-type behavior have been found. In the
strong coupling limit, degenerate perturbation theory applies and superconductiv-
ity arises due to the condensation of preformed pairs. In the intermediate coupling
regime, however, one has to rely on quantum Monte Carlo results which, unfor-
tunately, are restricted to rather small systems [3]. In this paper we present a
generalization of the attractive Hubbard model, which reduces to the spherical
model [4] in the classical limit. In this model, treated with the functional inte-
gral technique, no uncontrolled approximation has to be invoked to calculate the
properties of interest. Here we concentrate on the normal-state properties and
in particular on the phase-transition line, i.e., the dependence of the transition
temperature on interaction strength.
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2. Formal matters

The standard Hubbard model is generalized as follows. Introducing a pair
creator with n components, the Hamiltonian reads

where Qiα = aiα|aiα|, a = 1, 2, ... , n, tij = t is the hopping between nearest
neighbors and p is the chemical potential. For n = 1 the Hamiltonian reduces to
the standard Hubbard model.

The interaction term is eliminated in terms of the Hubbard- Stratonovich
identity for each time slice and site [5,6]

Upon taking the limit n -> oo it can be shown that the Ginzburg-Landau functional
becomes Gaussian in form [7]. The result is an effective action

where icon is a bosonic Matsubara frequency, S0 — some constant, and the suscep-
tibility, x(k, iωn), is given by a set of self-consistent equations

and iεn is a fermionic Matsubara frequency.
Figure 1 shows diagrams of the self-consistent equations, with the notation

Γ(k, z) = (|Δ(k, z)| 2 ). Interestingly, the structure of the equations is very similar
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Fig. 1. Diagrammatic representation of the large-n self-consistent equations. Bold lines
are dressed Green's functions and thin lines are bare ones.

to the T-matrix equations obtained by an infinite resummation of ladder dia-
grams [2]. It should be noted that in the present approach not all internal lines are
dressed, which is an important difference between the conventional approach and
the present formalism. In the limit t —>Owe recover correctly the atomic limit,
whereas the standard T-matrix approach fails to do so. Indeed, a quick calculation
for small densities, p, shows that the set

is a self-consistent solution, where G(z) is the exact result in this limit. Thus, our
equation seems to be clearly superior to the conventional approach.

3. Numerical results

A numerical solution of the self-consistent set of equations has been made in
three dimensions using a Fourier technique. A particularly interesting result is the
evolution of the transition temperature as a function of interaction strength, U.
As seen from the Ginzburg—Landau functional the transition occurs when 1/U +
x(0, 0) = 0. In Fig. 2 we show results of solving this equation for a number of in-
teraction strengths at a fixed filling fraction of p = 0.2. For small U the transition
temperature rises exponentially as expected from BCS, but the numerical results
do not seem to go to the BCS curve (solid line) for finite U. This effect is probably
partially due to finite-size effects because transition temperatures were obtained
only for a 8 x 8 x 8 system. For temperatures above approximately 0.15t no sig-
nificant finite-size effects were observed compared to 16 x 16 x 16 systems, but
for low temperatures finite-size effects become increasingly important. For large U
the transition temperature is expected to decrease as t 2 /U, because the Hubbard
model can be mapped to a model of hard-core bosons with a hopping due to pair
dissociation in this limit [8]. This behavior is also corroborated by our results.

The evolution of the electronic state with increasing interaction is revealed
by observing the pair propagator, T(k, z). For small U and small momenta the
structure of the propagator is that of a resonance, and the phase transition is
BCS-like. For large momenta a bound state is observed in the propagator. This
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Fig. 2. Transition temperature as a function of interaction strength, both in units of t.
Results are for an 8 x 8 x 8 system at a filling fraction of p = 0.2; error bars are estimates.
The dashed curve is a guide to the eye and the solid curve is the result of solving the
BCS gap equation.

bound state creates a new band of paired electrons which intersects the free elec-
tron band, hybridizes it, and yields two bands. For increasing U the bound state
is observed for smaller momenta and when U becomes comparable to the free
band width, 12t, there is a bound state for all momenta. The phase transition is
now a Bose—Einstein condensation of local pairs. The band of bound electrons will
now have moved below the free band and we observe a lower Hubbard band of
paired electrons and an upper Hubbard band of free electrons. In between these
two bands a small third band is observed which can be attributed to the coupling
of an electron to a sound-like mode of the quantum liquid.
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