TRANSPORT AND MAGNETIC STUDIES OF NEW MIXED-VALENCE COMPOUNDS:
K₃Cu₈Se₆, KCu₃Se₂, K₃Cu₈Te₆ AND BaCuS₃₋ₓ

I. JACYNA-ONYSZKIEWICZᵃ, M. SIDOWSKIᵃ, W. STARODUBᵇ, A. RATUSZNAᶜ AND S. ROBASZKIEWICZᵃ

ᵃInstitute of Physics, A. Mickiewicz University
Umultowska 85, 61-614 Poznań, Poland
ᵇDepartment of Physics, Kharkov State University, Kharkov, Ukraine
ᶜInstitute of Physics, Silesian University, Uniwersytecka 4, 40-007 Katowice, Poland

New mixed-valent copper chalcogenides BaCuS₃₋ₓ and K₃CuₓX₆ with X = Se or Te and KCu₃Se₂, with chemical patterns corresponding to the recently investigated K₃Cu₈S₆ and KCu₅S₂, were synthesized. For these new samples the results of resistivity and magnetic susceptibility measurements are presented. For BaCuS₃₋ₓ, K₃Cu₈Se₆ and KCu₃Se₂ the metal–insulator transition is observed with the low temperature phase being metallic, which is untypical, whereas K₃Cu₈Te₆ is a metal in the investigated temperature range. The temperature dependence of magnetic susceptibility of the studied samples testifies to their diamagnetic or weakly paramagnetic behaviour.

PACS numbers: 71.30.+h, 75.20.–g

1. Introduction

The alkali metal–copper–chalcogenides family includes both binary and ternary members which belong to two main categories: the valence-precise and the mixed-valent ones. The mixed-valent compounds have been of particular interest and subject to numerous physical investigations because they exhibit such properties as metallic conductivity, superconductivity and charge-density waves (CDW) [1, 2].

In this paper we report the synthesis, electric and magnetic properties of new mixed-valent ternary copper-chalcogenide phases: BaCuS₃₋ₓ, K₃Cu₈Se₆, KCu₃Se₂, and K₃Cu₈Te₆. The physical properties of these compounds are compared to those of the already known K₃Cu₈S₆ and KCu₅S₂ compounds.

2. Results and discussion

Samples. The compounds K₃Cu₈Se₆ and KCu₅Se₂ were synthesized from K, Cu and CuSe mixtures at the molar ratios 3:2:6 (batch I) and 1:1:2 (batch II), respectively. The mixtures were transferred to quartz tubes and evacuated (2 × 10⁻⁴ Pa). The batches (I and II) were heated in a multistep process to 1150 K and 1180 K, respectively, then sintered for 24 h period (I) and 8 h period (II).
This procedure was followed by multistep cooling to room temperature. The K$_3$Cu$_8$Te$_6$ specimen was synthesized in the reaction K, Cu and Te, at the molar ratio 3:8:6 at 1270 K for 2.5 h period. The sample of nominal composition BaCuS$_3$ was prepared from BaS, CuS and S mixture with the [Ba]:[Cu]:[S] molar ratio in the mixture equal to 1:1:3. Preparative conditions for the synthesis for this sample were following: temperature of isothermal sintering 1373 K and sintering time 14 h. All samples were obtained in the form of black chunky crystallites of metallic sheen.

Charge-transport measurements. DC electrical resistivity measurements were carried out in the usual four-probe geometry. Temperature measurements from 12 to 340 K were performed in a closed helium cryostat (CS-202 System APD). The $\rho(T)$ data were obtained from the computer-automated system.

Magnetic studies. The magnetic response of the studied compounds were measured over the 4–300 K temperature range using a cryogenically equipped Faraday balance. Magnetic susceptibility as a function of field strength (0–1.5 T) at a few temperatures was first investigated to determine if the samples had experienced saturation of their magnetic signal. We report the susceptibility data for which diamagnetic corrections for the constituent atoms were not made.

Crystallographic studies. The obtained samples were examined by X-ray diffraction (XRD) method for phase identification. Accurate d_{hkl} spacings were obtained from the powder patterns recorded on a Siemens-5000-computer-controlled powder diffractometer with Ni-filtered Cu K_α radiation. Structural details of the studied samples are given in Table.

Results of ρ vs. T measurements of the studied samples for cooling cycles are displayed in Figs. 1–4. The dependences reveal a few anomalies. Below 100 K, an insulator–metal transition was observed for K$_3$Cu$_8$Se$_6$ sample (Fig. 1). Surprisingly, the low-temperature phase was metallic while the high-temperature one was semiconducting, which is unusual for metal–insulator transitions [3]. Moreover, in the semiconducting phase of this substance we observed a multistep temperature dependence of resistivity which indicates the occurrence of two unidentified phase transitions. The multi-stepwise character of $\rho(T)$ can be partially attributed to a specific microstructure of the samples. The effect of temperature hysteresis was not observed only for the high temperature transition. A similar temperature behaviour of resistivity was detected for KCu$_3$Se$_2$ (see Fig. 4), whereas K$_3$Cu$_8$Te$_6$ was found to exhibit purely metallic behaviour (Fig. 2). Measurements of resistivity of BaCuS$_3$–x compound, Fig. 3, reveal the occurrence of a metal-to-semiconductor transition at about 270 K with metallic phase stable at low temperatures.

The obtained results of $\chi(T)$ measurements proved that the studied mixed-valent materials do not show any magnetic ordering in the range 4–300 K. According to the results of the magnetic studies they behave as diamagnetics or very weak paramagnetics (for example Fig. 4). However, the metallic-to-semiconductor behaviour was not supported by magnetic measurements. The representative physical data for the studied samples are collected in Table. In this table we also give the data about the recently investigated copper-chalcogenides: K$_3$Cu$_8$S$_6$ and KCu$_3$S$_2$, for comparison.

The studies reported in this paper were stimulated by the finding that the
layered K₃Cu₈S₆ exhibited a CDW phenomenon [1, 2, 4] which is typical of low-dimensional metals. The K₃Cu₈S₆ compound is the first inorganic material where the charge carriers and the subsequent CDW phenomenon have significantly p character (i.e. the metallic conductivity via holes in the sulphur valence band). On the basis of these data we speculated on the existence of a CDW instability in K₃Cu₈Se₆ and K₃Cu₈Te₆ whose chemical patterns correspond to those of the previously investigated chalcogenide. We found metal-insulator transition in BaCuS₃₋ₓ, K₃Cu₈Se₆ and KCu₃Se₂ while K₃Cu₈Te₆ remains a metallic phase. The observed complex character of the temperature dependence of resistivity for K₃Cu₈Se₆ and KCu₃Se₂ is similar to that discovered in K₃Cu₈S₆ which suggests

The representative results of physical investigations for several chosen copper chalcogenides.

<table>
<thead>
<tr>
<th>Compound (Reference)</th>
<th>Crystal structure</th>
<th>Resistivity ρ(t)</th>
<th>Magnetic susceptibility χ(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCu₃S₂ (K_{1+}Cu_{3}^{1+}(S^{2-})_{2}) [4, 5]</td>
<td>monoclinic, space group C2, layer-type structure</td>
<td>semiconductor</td>
<td>paramagnetic (Curie–Weiss law)</td>
</tr>
<tr>
<td>K₃Cu₈S₆ (K_{3}^{+}Cu_{8}^{1+}(S^{2-})_{5}S^{1-}) [1, 4]</td>
<td>monoclinic, space group C2, layer-type structure</td>
<td>metal with CDW instability, (\rho_{290K} = 5 \times 10^{-4} \Omega \cdot cm)</td>
<td>CDW instability at 155 K, Pauli–Landau and Van-Vleck paramagnetic contributions, (\chi_{300K} = -0.12 \times 10^{-6} \text{emu/g})</td>
</tr>
<tr>
<td>KCu₃Se₂ (K_{1+}Cu_{3}^{1+}(Se^{2-})_{2}) this work</td>
<td>new structure type of low symmetry, not isotypic with structure of KCu₃S₂ type</td>
<td>metal-insulator transition (165 K) (\rho_{165K}/\rho_{15K} = 1.5), unidentified transition at (\approx 240) K and 300 K (\rho_{290K} = 5.6 \times 10^{-5} \Omega \cdot cm)</td>
<td>diamagnetic (\chi_{290K} = -3.1 \times 10^{-7} \text{cm}^3/\text{g})</td>
</tr>
<tr>
<td>K₃Cu₈Se₆ (K_{3}^{+}Cu_{8}^{1+}(Se^{2-})_{5}Se^{1-}) this work</td>
<td>new structure type of low symmetry, not isotypic with structure of K₃Cu₈S₆ type</td>
<td>metal-insulator transition (95 K) (\rho_{80K}/\rho_{290K} = 1.2), unidentified transition at (\approx 180) K and 305 K (\rho_{290K} = 2 \times 10^{-4} \Omega \cdot cm)</td>
<td>diamagnetic (\chi_{290K} = -3.1 \times 10^{-7} \text{cm}^3/\text{g})</td>
</tr>
<tr>
<td>K₃Cu₈Te₆ (K_{1+}Cu_{8}^{1+}(Te^{2-})_{5}Te^{1-}) this work</td>
<td>new structure type</td>
<td>metallic (12–340 K) behaviour (\rho_{290K}/\rho_{14K} = 5.6)</td>
<td>diamagnetic or weakly paramagnetic</td>
</tr>
<tr>
<td>BaCuS₃₋ₓ (Ba^{2+}Cu^{1+}S^{2-}(S^{1-})_{2}) this work</td>
<td>monoclinic (a = 9.324 \text{ Å}), (b = 4.775 \text{ Å}), (c = 8.990 \text{ Å}), (\beta = 118.60^{\circ})</td>
<td>metal-insulator transition (95 K) (\rho_{270K}/\rho_{50K} = 1.5)</td>
<td>diamagnetic (\chi_{290K} = -2.3 \times 10^{-7} \text{cm}^3/\text{g})</td>
</tr>
</tbody>
</table>
I. Jacyna-Onyszkiewicz et al.

Fig. 1. Electrical resistivity data as a function of temperature for a sample $K_3Cu_8Se_6$.

Fig. 2. Electrical resistivity data as a function of temperature for a sample $K_3Cu_8Te_6$.

Fig. 3. Electrical resistivity data as a function of temperature for a sample $BaCuS_3$.

Fig. 4. Temperature dependence of the electric resistivity and the magnetic susceptibility for KCu_3Se_2.

a possibility of CDW transitions also in these systems. However, further detailed structural and magnetic studies are necessary for definite resolution of this problem.

We are grateful to the Committee for Scientific Research (Poland, project no. 2 P302 038 07) for financial support. We would like to thank Dr. J. Dubowik for the help in susceptibility measurements.

References