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Influence of Coulomb repulsion between fermions on stability of the su-
perconducting state in the model of boson-like local electron pairs hybridized
with wide-band fermions is studied. It is shown rigorously that the Bose con-
densation of the local pairs implies a divergence of the pairing susceptibility
in the fermion subsystem. Charge carrier concentration dependence of the
critical temperature Tc is evaluated with the help of random phase approxi-
mation and spectral properties of the bosons at T are analyzed.
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The high values of Tc of superconducting Cu—O ceramics (with relatively
small concentration of charge carriers, n) being proportional to the Fermi tem-
perature [1] and their small values of the coherence length are consistent with a
short-range almost unretarded attraction as a possible source of electron pairing.
For the pair radius smaller than the interpair distance, a condition which may hold
for strong enough local attraction, the pairs (possibly formed well above TO be-
come similar to hard core charged bosons and the resulting superconducting state
would resemble a Bose condensate. Indeed, the critical behavior of thermodynamic
quantities in the Cu—O superconductors supports the picture of Bose condensation
[2, 3]. On the other hand, the verified existence of the Fermi surface together with
several typically "electronic" properties' of these materials (Pauli-like magnetic
susceptibility and the oxygen NMR relaxation rate above Tc , antiferromagnetism
in some range of n) are naturally explained within the Fermi liquid theory.

The two seemingly contradictory types of behavior may be reconciled within
the model describing a system of heavy (hard core) bosons hybridized with wide-
-band electrons. Such a model was introduced by Ranninger and Robaszkiewicz [4]
within a small polaron theory and subsequently applied by these authors [5, 2, 6]
and others [7,8] as a possible explanation of properties of nonconventional super-
conductors.

In its most simple form [7,6] the boson—fermion (BF) model may be writ-
ten as
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where ckσ, cku (bk, bk) represent the fermion (boson) operators, Ek = 4- µ , „ k =

^k + AB 
— 2µ 

e
 (

A

,

 k k) is a fermion (boson) band energy, LAB — the bottom of the
boson band, µ — the chemical potential and N — the number of lattice sites (here
h = kB = 1). The last sum in (1) describes a process of decay of a boson particle
into a pair of fermions and the opposite process, v denotes the BF coupling. In
what follows the boson hard-core effects will be neglected, which is justified as long
as the boson concentration is small (nB = -, Σk (bkbk) < 1). The Hamiltonian is
analysed subject to the total charge carrier conservation condition: n = nF + 2nB.

The model (1) exhibits two different types of limiting behavior depending
on the concentration n and the position of the boson level (it is assumed that the
boson band stays above the bottom of the fermion band) [5, 7]. For the reliably
small interaction v and small enough n (n < n c ) the bottom of the boson band
lies above the Fermi energy and only very few of boson states can be occupied.
The processes of virtual excitations of the fermions to the boson level create the
effective attraction between the fermions, geff ti 2v 2 /(AB — 2µ). In this `BCS"
range of n the superconducting properties of the model (1) resemble very much
the ones of the weak-coupling BCS superconductor. For higher n (n > n c) the
Fermi level touches the bottom of the boson band (AB = 2µ) and all further
supply of the electrons into the system goes to the boson states. In such "Bose"
limit the superconducting transition is governed by the condensation of the bosons
with Tc~(n—nc)2/3 [7].

The inherent property of the model (1) is that the formation of the (s-wave)
condensate of fermion Cooper pairs is always accompanied by the condensation
of bosons and vice versa. This can be shown by considering the equation of mo-
tion for a Green function for bosons, G(q,t — t') = —iθ(t — t')([bq(t), bq(t')] )
((b q (t)|bq(t'))). Differentiating G(q,t — t') with respect to t and a resulting next
order Green function with respect to t' leads to an exact relation between the
time-Fourier transform of G(q, t—t') and the fermion pair susceptibility, Xss (q, ω) =

Σk,p((ct p|ep+ql| ck+q|c_k|))ω:

The direct consequence of Eq. (2) is the common temperature of divergence of the
boson Green function and the s-wave pair susceptibility at ω, q = 0, which shows
(by virtue of the Thouless criterion) that the onset of macroscopic occupation
of the q = O boson state is accompanied by a superconducting transition in the
fermion subsystem [8].

The deficiency of the presented so far analysis of the BF model is neglect of
the Coulomb repulsion which is known to be important in the cuprate supercon-
ductors and crucial for explanation of antiferromagnetic and insulating properties
of their parent La2CuO 4 and YBa2Cu3O6 compounds. It is natural to ask if s-wave
state generated by the BF coupling in the form given by (1) survives the destroying
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influence of the on-site Coulomb correlations. To study this problem we complete
the model (1) with a Hubbard term describing on-site repulsion between fermions*

Including Z-lu into the Hamiltonian does not change Eq. (2), because 'Hu does not
depend on boson operators. Provided that the Hubbard U is not too strong as
compared to a bandwidth 2D one can use random phase approximation (RPA) for
the quantitative estimation of G(q, ω). The RPA result for the normal phase is

*There is no need to include an on-site repulsion between bosons and fermions as they describe
electron states which are well separated in space.
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Tc = 1.14"/D 2 — 1 2 exp(-1/g). Using above equations to solve for Tc and 6 one
finally obtains

For very weak v and U — D, y in (8) may be neglected and T, is approxi-
mately given by a very simple formula: Tc = v2 /U f (n). Accuracy of the above
general formulas was verified for the weak v using numerical results obtained
with DE = 4v2 8 ^- 1 (corresponding to isotropic 3D free-particle-like spectrum:
eq = q2 /2mF — D with a cut-off qc , —1 < Ę < 1, D = 1; see Fig. la). Despite
the strong reduction of T, with increase in U, superconductivity survives in this
region at least as long as RPA theory is valid.

As concerns the nature of phase transition in the BF model one expects
to find an observable contribution to the thermodynamic properties as T
coming from the condensing bosons. The RPA calculation of the boson Green
function (Fig. lb) shows that the bosons exhibit rather well defined quasiparticle
features at Tc . Decrease in the coupling y narrows the quasiparticle peak as it
gets to small ω region. For a very small wave vector, q < q0 2qcTc/p, the
quasiparticle peak obeys q 2 dispersion law with relatively small value of an effective
boson mass (see Fig. lb, inset). In conclusion, we note that although the RPA
method does not allow to study the region of the phase transition in a consecutive
way due to a lack of its self-consistency, it seems to share some similarities with

Fig. 1. (a) TT versus concentration n for v/D = 0.1, AB = —  D : U = 0 (.),
U= D (o). The symbols (e, o): approximate formulas (8,9), lines: numerical solution of
Eq. (5). (b) —ImG(q,ω) for v/D = 0.1 : U = O (dots), U = D (lines) for q/2qc = 0.02,
0.1. Inset: position of maximum of —ImG as a function of q/2q, for U = O (n = 0.4,
T=TY ).

The present approximation overestimates value of Tc in quasi-2D systems. Significant im-
provement in this respect would require a completely self-consistent approach [6].
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a self-consistent calculations [6,8] concerning the behavior of the bosons in the
vicinity of condensation point.
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