Vol. 91 (1997) ACTA PHYSICA POLONICA A " No. 2

Proceedings of the European Conference “Physics of Magnetism 96”, Poznan 1996

SUPERCONDUCTIVITY IN ‘HUBBARD MODEL
WITH CORRELATED HOPPING

B.R. BULKA AND M. ROBASZEWSKA

Institute of Molecular Physics, Polish Academy of Sciences
Smoluchowskiego 17, 60-179 Poznan, Poland

Using the slave-boson method in its spin- and charge-rotational invari-
ant representation we determine stability of the superconducting state in the
Hubbard model with correlated hopping. In general the term with correlated
hopping violates electron-hole symmetry, however, in the special case when
the correlated hopping integral X is equal to the uncorrelated hopping inte-
gral ¢ the electron-hole symmetry remains. We investigate this case and show
that correlations induced by onsite Coulomb interactions U yield to the nor-
mal state with exactly single occupied sites (corresponding to |U = c0}). The
phase diagram of the superconducting state is determined for the different
electron concentration n. At the half-filled band (n = 1) a direct transition
from the Mott insulator to the superconducting state occuis.
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1. Introduction

High-T. superconductors have many properties, which classify them as a
strongly correlated electron system, and therefore, a great interest in the Hubbard
model and its extensions since the discovery of new superconductors has been fully
justified. The model is the simplest one, which describes Coulombic interactions
of electron on the lattice. An important question which arises is a mechanism
of formation of Cooper pairs in the presence of strong Coulomb repulsion. In
some circumstances even not strong intersite interactions may overwhelm onsite
repulsion and lead to superconductivity [1,2]. It was shown that such a case may be
in the Hubbard model with correlated hopping (¢ — X Hubbard model) described
by the following Hamiltonian: ‘

H= Z (cj;cj,, + c;-'uc,-,)[—t +X(nico +n5-0)]+ U Z NipNi—. (1)

{ii)eo i
The parameter ¢, X and U are the hopping integral, the correlated hopping inte-
gral of electrons between nearest neighbor sites and the onsite Coulomb integral,
respectively. In cuprates, fullerides, barium bismuthates one can estimates the pa-
rameters as t &% X ~ 0.2 ¢V and U ~ 1 eV. The model (1) has been investigated
extensively in the mean-field approximation (MFA) [1]. This approach neglects,
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however, electron correlations, crucial for the normal metallic state and in conse-
quence for stability of superconductivity. Recent studies [2] of the model performed
. by an exact method for the 1D chain in the case ¢t = X have shown that the normal
state is a strongly correlated metallic state with singly occupied sites.
We want to study the model (1) for ¢ = X by means of the slave-boson
(SB) method in its spin- and charge-rotational invariant representation [3]. The
method takes into account electron correlations and is very effective in studies -
of superconductivity (as well as other phases) in the extended Hubbard model.
We will determine the stability conditions for the superconducting phase and its
ground state characteristics. We want to study the phase transition from the Mott
insulating phase to the superconducting phase, which occurs in the system at n = 1
electron/site.

2, Slave-boson approach

In the spin- and charge-rotational invariant SB representation [3] the dou-
blet of states corresponding to a single occupied site |o); and the doublet |p);
corresponding to a doubly occupied site (p = 2) and an empty site (p = 0), are
expressed by the Bose operators p; 57, b pp and the Fermi operators f; . In order
to express the Hamiltonian (1) by these operators we use the Hubbard operators

X7 =10)i (0] = (1 = niz)cf, = Zp}f,,,(bi,oofi,,/ ~ o' fi,51bi,20), (2)
X7 =10)ii(2| = —onisciz = ZP?:,,,,,(bi,mf,-t,/ — o' f; 51bi,22) (3)
. ~
and
X2 = 2)i4(2] = nignis =2 b, bi po. (4)
P

The superconducting order parameter is defined by
Ai = (cimciy) =2 (bhsbiop). (8)
> .

The SB mean-field solution gives results in agreement with the Gutzwiller ap-
proximation if one properly normalizes the slave-boson operators [4]. We used the
normalization procedure described in Ref. [3]. In order to find stable solutions the
boson operators are treated as c-numbers and used as variational parameters in
the free energy

F=F¢+Fy,= —% Z{ln[l + exp(BE:)] + In[l + exp(—BE)]}
_ k

v | ,
+-U2—(b2 +26) — AN (1 +26) — 2As NA. (6)

Here, NV is the number of the lattice sites, Ej = [(2fnx +X0)? 4 (2rne +As)2)2/2, for
the hypercubic lattice g = )5 cos(kéa), Ao and As are the Lagrange multipliers
for the constraints corresponding to the condition for the number of electrons and
the order parameter (5). The parameter { = —4t6a?b3 and r = —4tAa2b2, where §
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is connected with the electron concentration n = 1426 = 142((by2) — (b00)), a2 =
P?/[b3(1 462~ 44%)], bo = 2(baz)+2(boo), 52 = 2(bd;bas) +2(bdboo) +2(b3bos) +
- 2(bb20), and for paramagnetic state p = (py4) = (p--), (p4+-) = (p-4+) = 0.
- The stable solution is determined from a set of equations for the minimum of the
free energy F (Eq. (6)). At t = X, the spectrum of Cooper pairs is gapless for any
n and U. In this case it is easy to find the energy of the superconducting state at
T=0 »

W 2

PsN=-2 (1—~U-> +US  for —~W<U<U,, M
8 w

] 4 ey

F°/N = 3" for U< -W, _ (8)

where the order parameter and the critical value of U are
|3]=\/62+A2=%(1—%>, ©)

Ue = W(L - 4/5)). (10)
For large U > —2|6|W the normal metallic state is with singly occupied sites only,
and for n = 1 it is the Mott insulator. The state brought about only by doubly
occupied sites is more stable for U < —2|6|W. The free energy corresponding to
these cases is :

FN/N = —-W|8|(1 - 2/|8]) + U(|6| + 6) and FN/N =Un/2, (11)
respectively. The above results are obtained for the rectangular density of states
(p(E) = 1/W for |E| < W/2) in the system of noninteracting electrons. For
comparison in the 1D chain our approach gives the critical value U,

Ue _ 4sin[g(1-2[8])] ,  cos[Z(1 —2[8])]

=== 5 16] (12)
44  « (1+2)8)) 1+ 2|6

and the exact result is [2]
% = — cos[n(L - 2|8)). ‘ (13)

The results obtained in the MFA with the rectangular DOS are qualitatively
different. The critical value of U is

W 1-12/6]2
MPA = 14
paes = (14)
The free energies of the normal and the superconducting state are
Fiiea/N = o = 2151(1 = 46%), (15)

U U2
Fimea/N = n? = U8 + s (U = VU2 + 3W?)

+'3_16'(3U— VU2 +3W?)  for —W <UL, (16)

FSpa/N = %nz + %(1 - 462)‘ for U< -W. (17)
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3. Conclusions

We showed that the slave-boson study of the Hubbard model with correlated
hopping gives qualitatively similar results to those obtained by the exact method
in a 1D system at ¢ = X and in contrast to the mean-field results. The reason
is that the'SB method takes into account correlations, which are neglected in the
MFA. It is clearly seen in the n dependences of U. (Egs. (10) and (14)). In the
limit n — 0 (n — 2), where correlations become irrelevant, both results converge
to each other. It is important to point that at £ = X for any n there is no gap in the
excitation spectrum of Cooper pairs. Electric current in such a system is carried
by electrons as well as Cooper pairs and any dissipation leads to a finite resistance,
there is no superconductivity. We expect unusual electromagnetic properties as the
subsystem with Cooper pairs may respond in a different way to the electromagnetic
field. The SB method also shows that the normal metallic state is the state either
only with singly occupied sites (for U > —2|6|W) or only with doubly occupied
sites (for U < —2|6|W). At n = 1 the normal state is the Mott insulator state and
there is a direct insulator-to-superconductor transition.
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