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In ordinary metals, antiferromagnetic exchange between conduction elec-
trons and a magnetic impurity leads to screening of the impurity spin below
the Kondo temperature, TK. In systems such as semimetals, small-gap semi-
conductors and unconventional superconductors, a reduction in available
conduction states near the chemical potential can greatly depress Tx. The
behavior of an Anderson impurity in a model with a power-law density of
states, p(ε) c|c|r,r > 0, for |ε| < Δ, where Δis small compared to the
bandwidth, is studied using the non-crossing approximation. The transition
from the Kondo singlet to the magnetic ground state can be seen in the be-
havior of the impurity magnetic susceptibility χ. The product Tχ saturates
at a finite value at low temperature for coupling smaller than the critical
one. For sufficiently large coupling Tχ -> 0, as T -> 0, indicating a complete
screening of the impurity spin.

PACS numbers: 75.20.Hr, 72.15.Qm, 74.70.Tx

1. Introduction

In a number of Fermi systems the density of states p(ε) vanishes at the
Fermi surface EF and varies linearly or quadratically for lεI/D E |E—EF|/D « 1,
where D is the energy scale associated with the conduction electron bandwidth.
This situation may arise, e.g. in heavy-fermion or cuprate superconductors and
anisotropic heavy-fermion semiconductors [1]. Also exotic phases of the Hubbard
model may possess p(ε) oc lei in two dimensions [2].

In normal metals dilute impurities coupled antiferromagnetically to the con-
duction band lead to a low-temperature reduction of the Curie term in the impurity
magnetic susceptibility and an increase in the resistivity. This is known as a Kondo
effect. The formation of the spin-singlet state favored by the antiferromagnetic
coupling depends on the availability of electronic states at low energies.

Earlier studies by poor-man's scaling and large-N method, where N is impu-
rity orbital degeneracy, showed that the Kondo effect survives if the coupling be-
tween electrons and the impurity J is larger than a critical value Jc [3]. In a gapless
system with p(ε) Jc scales linearly with r for r << 1. A large-N approach to
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magnetic impurities in superconductors [4,5] leads to similar results for Jc . How-
ever, for r < 1 or N = 2, any finite impurity concentration was found to result in
Jc = 0. Numerical renormalization group calculations [6,7] and third-order scal-
ing [8] show that the Kondo effect does not occur for r > 1/2 in the particle-hole
symmetric problem. Breaking this symmetry, e.g. by potential scattering or band
asymmetry, helps the screening of the impurity moment. The critical coupling J c

was found to be strongly dependent on the magnitude of the potential scattering
term [6]. Earlier calculations for the case of a full gap, p(ε) = O for jεl < ZA « D,
also found a finite Jc away from the particle-hole symmetry [9,10].

In this work the SU(N) Anderson model is studied in the non-crossing ap-
proximation (NCA). In the limit of large Coulomb repulsion U on the impurity
site and for temperatures T << U, the model has the following form:

where Ej is the position of the bare impurity level, f and b are the impurity fermion
and the slave boson operators, respectively. The last term in the Hamiltonian
follows from the restriction of the Hilbert space to a singly occupied impurity site,
En, + b+b = 1, m = 1,..., N. The self-energies of the slave boson and the
impurity fermion Green's functions are given by

The density of states of the conduction band is assumed to be of the form
p(ε) = C|ε/Δ|rexp[-(ε/D)2] for 0 < |ε| < !AID,andCexp[-(ε/D)2] otherwise,
and C is a normalization constant. The exponential part of p(ε) does not influence
the low-energy physics in any important way, while it is convenient in solving the
integral equations (2) and (3).

2. Numerical results

Here we focus on the non-degenerate case, N = .2. Results for static spin
susceptibility are shown in Fig. 1 for Δ /D =10 -5 , Ef/D = -0.67, and r = 1
and r = 2. For larger Γ = πN0V2 , Tx decreases to zero at low temperature,
which is associated with the screening of the impurity spin. For r smaller than
a ce tain critical coupling Γc, Tx remains finite, as T -r 0, indicating that im-
purity is not screened. The critical coupling for the data sets presented in Fig. 1
is 0.108 for r = 1 and Γc/D 0.115 for r = 2. A qualitatively similar
behavior of the impurity susceptibility was found by numerical renormalization
group calculations [6, 7].

The transition from the spin-singlet ground state to the unscreened moment
is also reflected in the impurity density of states. The Abrikosov-Suhl resonance
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Fig. 1. Impurity spin susceptibility TX as a function of log(T/D) for r = 1 and
r = 2. The magnitude of the pseudogap is Δ/D = 10 -5 and the bare impurity level is
Ef/D = —0.67.

Fig. 2. The low-energy part of the impurity density of states p f (w) for r = 1 and the
same data set as in Fig. 1, evaluated at T/D = 2 x 10-7 , 1.2 x 10 -7 , 1.4 x 10 -7 , and
2 x 10 -7 for FID = 0.10, 0.105, 0.11, and 0.12, respectively.

approaches the Fermi level when Γ  —> Γc.For Γ< Γcthe resonance falls below
EF as illustrated in Fig. 2. The analogous behavior of Nf(ω) was noted earlier by
Ogura and Saso [11] for the case of a full gap (r = oo).

A preliminary analysis of the dependence of the critical coupling on LI in the
limit Γ <—E1, and Δ/D « 1, indicates scaling Γc cc D/ ln(D/Δ), independent
of r, at least for r > 1. This can be expected on the basis of the large-N mean-field
results in the Kondo limit [4], where it was found that the critical exchange cou-
pling is J, 2D/ ln(2D/Δ) for A « D in a model with p(ε) = const outside the
pseudogap region.

A more detailed study, including results for N > 2, will be presented in a
separate publication.
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