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Raman light scattering with excitation of electron-hole continuum and
a phonon is investigated theoretically. The effect of a surface and screening
of the electron-photon coupling and of the deformation potential as a result
of the Coulomb interaction of the electrons is taken into account. The pa-
rameters of the 340 cm-1 resonance line in superconducting YBaCuO are
estimated by comparing with experimental data.
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1. Introduction

We study the resonance in inelastic light scattering in metals with the ex-
citation of electron-hole pairs continuum and a phonon. If the electron—phonon
interaction is taken into account, the narrow resonance loses its Lorentzian shape.
The asymmetric shape of the line is a characteristic indicator of the Fano resonance
or the Breit-Wigner line shape.

Ordinarily, the quantum-mechanical approach is used and a very simple case
in which the spatial dispersion can be ignored, is considered. However, the cor-
responding condition kv « (v = 108 cm/s is the Fermi velocity, 7 --1 is
the electron collision rate, and k and w are the characteristic wave vector and
frequency) is by no means always satisfied, for example in the case of the scat-
tering of light with the wave vector k P. ωp/c, where ωp 3 x 10 15 s-1 is the
plasmon frequency. If an optical phonon with frequency WD is excited in the pro-
cess, the collision rate r-1 2πgepmax(WD,T),WD 3 x 1013 s-1 . Setting the
electron-phonon coupling constant gep= 0.5, we see that both weak and strong
spatial dispersions are possible.

If the transferred wave vector k = k0 — k(s) and frequency w = WO) — co( s)
((i) stands for incident, (s) for scattered light in metal) are small compared to the
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Fermi momentum and energy, respectively, the classical kinetic equation for the
electrons and equation of motion for phonons with appropriate boundary condi-
tions can be applied to calculate the response, whose imaginary part represents the
differential light scattering cross-section (LSCS) [1, 2]. The effective Hamiltonian
describing the interactions in the considered system has the following form:

where .17 (r  t) = f (2̀17,
953 γ(p) fP (r, t) + g,k uik(r, t) + g,°Ptwi(r, t) and f,(r, t) is the

electronic density fluctuation operator, uik(r, t) is the deformation tensor, wi is
the displacement corresponding to the optical phonons; and γ(p) , g k , and goPt

are the vertex functions containing resonance denominators (for w(') or W(S) equal
to interband transition frequencies) appearing in the second order of the per-
turbation theory with respect to vector potentials of the incident A ( ' ) (r, t) and
scattered A ( ) (r, t) light. It can be shown [2] that the Coulomb interaction of the
electrons and the "collisional" part of their interaction with the impurities and
phonons screen all bare vertices γ(p), i(p), aik(p) so that the substitutions like
γ(p) --* γ(p) — (γ(p))/(1) must be made, where ((• • •)) denotes the integration
over the Fermi surface; i, k = x, y, z; U(r, t) AO ) (r, t)A ( ) (r, t). The LSCS in
a metal can be expressed in terms of the Fourier transforms of the field U and
correlation function ((N(r, t).AV(r', t'))) with respect to s — s', t — t', s = (x, y).
In order to find the Fourier transform of the correlation function, we apply the
general fluctuation-dissipation theorem [1-3] and express it by imaginary part
of the susceptibility. Therefore, our problem is to find the susceptibility of the
electron—phonon system in the external field U(r, t).

2. Susceptibility and Fano resonance

After substitution of the screened vertex functions the Coulomb interaction
can be disregarded up to frequencies w «p , and Boltzmann's equation is used
in the r-approximation.

The solution of Boltzmann's equation for the electron distribution function
and the equation of motion for the phonon displacements with appropriate bound-
ary conditions leads to
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The first term on the right hand side of (2) has the form typical of infinite
space. It represents contributions (3) of the electron—hole pairs and bulk phonons.
The poles of the matrix Dik(k,ω) determine the spectrum of the bulk optical
phonons ω = ω(k) — iΓ(k, w) with their damping (see Eq. (33) in [3]).

The second term in (2) represents an influence of the surface, the tensor p
results from the boundary conditions. The poles of matrix Dαk(ks , w) determine
the spectrum of the surface optical phonons [3].

The LSCS in terms of the susceptibility has the form

The influence of the surface is represented in (6) only by the integrand IU(k,ω)| 2

describing the distribution of the incident and scattered light. The imaginary part
of the susceptibility for kv « Iw + ir-1| has the following form:

Here ς is the sum of the normal components of the wave vector of the incident
and scattered light in the metal. Using Eq. (7) we fit (see Fig. 1) the shape of
the YBaCuO resonance line [4] with w = 340 cm-1 by the following param-
eters: 2(ξ(p)γ(p))2/p(γ2(p)) = 8100 cm-2 , g°Pt/(ξ(p)γ(p)) = —0.62, r-1 =
1030 cm -1 , Γ2(k = 0,w) = 9.9 cm -1 . The intrinsic phonon line width 4 ) =
2.5 cm-1 stems from a fit to the phonon line shape in the insulating state.

Fig. 1. Fit of Eq. (7) to 340 cm -1 resonance line of YBaCuO. The parameters used to
get the fit are given in the text.
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Our Eq. (7) contains the total phonon line width only. Therefore, this is es-
sentially different from the formula (32) in Ref. [5] derived by the Green functions
method, and including the total phonon line width and, in addition, an intermix-
ture of the intrinsic phonon line width.

At low w our results show deviation from experimental data shown in Fig. 1.
The LSCS (6) vanishes if the frequency transfer w goes to zero because the elec-
tron response is proportional to w and the phonon damping I'2 is multiplied by
w. The last assumption was confirmed only for electron—phonon contribution Γ2e) ,
but it seems natural that the intrinsic damping disappears also in static circum-
stances. In any case, if ωΓ2 appears in (7) instead of ωΓ2 we get at w = O a value
Imx(ω = 0) = 4τΓ2Imx(ώ) 0.04Imx(ώ), i.e. unmeasurable small value.

3. Summary

We evaluate the inelastic LSCS as the semiclassical response of a half-infinite
metal. There are three contributions to the LSCS:

(i) the background is associated with excitation of the electron—hole pairs
and is observed in the frequency transfer range w max(v|ς|, r-1 ), where r-1 is
the temperature dependent collision rate for the electrons;

(ii) the light scattering may involve the excitation of a bulk phonon;
(iii) the excitation of surface optic phonons, which are similar to Rayleigh's

waves, is possible. The longitudinal optical phonon slipping along the surface gives
a nonsymmetrical peak.

One of us (L.A.F.) acknowledges the financial support by the Russian Foun-
dation for Basic Research (grant No. 94-02-03029).
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