Proceedings of the European Conference "Physics of Magnetism 96", Poznań 1996

OFF-DIAGONAL LONG-RANGE ORDER IN MANY-ELECTRON PROBLEM

J. SZEFTEL

Laboratoire Léon Brillouin (CEA-CNRS), CE-Saclay 91191 Gif-sur-Yvette Cédex, France

The interacting electron Hamiltonian $H = H_D + \sum_{K,\zeta} H_{K,\zeta}$ is considered in the Hilbert space spanned by Slater determinants of Bloch wave functions. H_D consists of the diagonal part of H in this basis. K and $\zeta = 0, \pm 1$ stand for the total momentum and projected spin of electron pairs and $H_{K,\zeta}$ is the off-diagonal part of H describing the most general two-electron scattering process conserving K and ζ . It is shown that the eigenspectrum of H includes all eigenvalues of $H_D + H_{K,\zeta}$ for every K and ζ value. The associated eigenvectors of H are shown to have off-diagonal long-range order.

PACS numbers: 03.65.-w, 71.45.-d, 74.20.-z

1. Introduction

The interest for the study of electron correlations in metals has kept growing because of their significance in magnetism and superconductivity [1,2]. This work presents a mathematical proof that H, a general many-body Hamiltonian, operating in S_{ϕ} , the Hilbert space spanned by Slater determinants, has numerous eigenstates characterised by having off-diagonal long-range order [3] which was introduced as a fingerprint of the BCS state [2]. To work out the proof, it is necessary to introduce an auxiliary Hilbert space $S_{\otimes \phi}$ which is built over a set of pairs characterised by their total momentum K and projected spin ζ .

2. The many-body Hamiltonian

A crystal of arbitrary dimension, containing N sites and 2n electrons where $N \gg 1$ and $n \gg 1$ is considered hereafter. These electrons populate a single band of dispersion E(k) where k is a vector of the Brillouin zone. E(k) is assumed to be independent of the electron spin $\sigma = \pm 1/2$. The Pauli principle requires that $n \leq N$. The total system Hamiltonian H can be written in reciprocal space as

$$H = \sum_{k,\sigma} E(k) c_{k,\sigma}^+ c_{k,\sigma} + \sum_{K,k,k',\sigma_{i=1,\dots,4}} V(K,k,k') c_{k,\sigma_1}^+ c_{K-k,\sigma_2}^+ c_{K-k',\sigma_3} c_{k',\sigma_4}.$$
 (1)

The Fermi operators $c_{k,\sigma}^+$ and $c_{k,\sigma}$ account for electron creation and annihilation on the Bloch state k, σ . The real coefficients V(K, k, k') are the matrix elements

J. Szeftel

of the two-electron scattering process. The summations in Eq. (1) are carried out over all possible values of K, k, k' in the Brillouin zone under the constraint of spin conservation $\sigma_1 + \sigma_2 = \sigma_3 + \sigma_4$. The Hamiltonian H describes the electron motion in the Hilbert space S_{ϕ} of dimension d_{ϕ} . Each basis vector ϕ_i with $i = 1 \dots d_{\phi}$ is a Slater determinant involving 2n one-electron Bloch states.

It is convenient to introduce the pair creation and annihilation operators $b_{\pm 1}^+(k,k') = c_{k,\pm\sigma}^+ c_{k',\pm\sigma}^+$, $b_{\pm 1}(k,k') = c_{k',\pm\sigma}c_{k,\pm\sigma}$, $b_0^+(k,k') = c_{k,\sigma}^+ c_{k',-\sigma}^+$, $b_0(k,k') = c_{k',-\sigma}c_{k,\sigma}$. The subscript $\zeta = 0, \pm 1$ stands for the projection of the total spin of the pair. It is useful to recast the Hamiltonian H of Eq. (1) in terms of the subsidiary Hamiltonians H_D , $H_{K,\zeta}$ as $H = H_D + \sum_{K,\zeta=0,\pm 1} H_{K,\zeta}$ where H_D and $H_{K,\zeta}$ read as

$$H_{\rm D} = \sum_{k,\sigma} E(k) c_{k,\sigma}^{+} c_{k,\sigma} + \sum_{k,k'} V(k+k',k,k) c_{k,\sigma}^{+} c_{k,\sigma} c_{k',-\sigma}^{+} c_{k',-\sigma} + \sum_{k,k',\sigma} [V(k+k',k,k) - V(k+k',k,k')] c_{k,\sigma}^{+} c_{k,\sigma} c_{k',\sigma}^{+} c_{k',\sigma} ,$$

$$H_{K,0} = \sum_{k,k' \neq k} V(K,k,k') b_{0}^{+}(k,K-k) b_{0}(k',K-k'),$$

$$H_{K,\pm 1} = \sum_{k,k' \neq (k,K-k)} V(K,k,k') b_{\pm 1}^{+}(k,K-k) b_{\pm 1}(k',K-k').$$
(2)

The purpose of this article is to demonstrate the following theorem characterising a class of eigensolutions ψ, ϵ of the Schrödinger equation $(H - \epsilon)\psi = 0$ where H is given by Eq. (1) and ψ belongs to the Hilbert space S_{ϕ} :

3. Theorem

To each eigensolution $\psi_{K,\zeta}$, ϵ where $(H_D + H_{K,\zeta} - \epsilon)\psi_{K,\zeta} = 0$, there corresponds an eigensolution ψ, ϵ of H such that $(H - \epsilon)\psi = 0$.

Furthermore it will be shown that ψ has off-diagonal long-range order. Although it is easy to prove [4] this theorem in S_{ϕ} for a single pair (n = 1), it becomes necessary to treat the problem in an auxiliary Hilbert space [5,6] $S_{\otimes \phi}$ for n > 1.

4. Properties of $S_{\otimes \phi}$

Any Slater determinant ϕ_i of S_{ϕ} can be written as

$$\phi_i = \prod_{K,\zeta} \left(\prod_{j=1}^{n_{K,\zeta}} b_{\zeta}^+(k_j, K - k_j) \right) |0\rangle, \tag{3}$$

where $|0\rangle$ designates the no-electron state and all pairs $b_{\zeta}^+(k_j, K - k_j)|0\rangle$ having the same K and ζ have been regrouped together. In the product with respect to the index j, the i dependence of j has been dropped for simplicity. The integer $n_{K,\zeta} \geq 0$ designates the total number of pairs characterised by K, ζ in ϕ_i , and the $n_{K,\zeta}$'s satisfy $\sum_{K,\zeta} n_{K,\zeta} = n$. The basis vector $\Phi_{i,\alpha}$ of $S_{\otimes \phi}$ is defined from ϕ_i as

$$\Phi_{i,\alpha} = \bigotimes_{K,\zeta} \phi_{K,\zeta}, \quad \phi_{K,\zeta} = \prod_{i=1}^{n_{K,\zeta}} b^+_{\zeta}(k_j, K - k_j) |0\rangle, \tag{4}$$

where the tensor product replaces the simple product $\prod_{K,\zeta}$ of Eq. (3) and each $\phi_{K,\zeta}$ is a Slater determinant containing $n_{K,\zeta}$ of pairs K,ζ . The sequence of integers $\{n_{K,\zeta}\}$ in Eqs. (3), (4) defines uniquely the pair configuration α of ϕ_i . As a large number of linearly independent vectors $\Phi_{i,\alpha} \in S_{\otimes \phi}$ are characterised by the same pair configuration α , $n_{K,\zeta}$ does not depend on the index *i* but conversely depends on the index α and will therefore be denoted $n_{K,\zeta,\alpha}$ in the following. The whole set of pair configurations of ϕ_i is obtained by selecting *m* permutations of 2n one-electron Bloch states defining ϕ_i . The basis vectors $\Phi_{i,\alpha}$ of $S_{\otimes \phi}$ are generated by allowing the subscripts $i = 1 \dots d_{\phi}$ and $\alpha = 1 \dots m$ to run over all possible values, which implies that the dimension of $S_{\otimes \phi}$ is equal to md_{ϕ} . The $\Phi_{i,\alpha}$'s are chosen to be orthonormal.

The subspace $S_{\varPhi} \subset S_{\otimes \phi}$ is then introduced as spanned by the basis vectors Φ_i defined by

$$\Phi_i = \sum_{\alpha=1}^m \Phi_{i,\alpha},\tag{5}$$

where the sum is carried over m pair configurations α of ϕ_i . Owing to the one to one correspondence between $\phi_i \in S_{\phi}$ and $\Phi_i \in S_{\Phi}$, the dimension of S_{Φ} is inferred to be equal to d_{ϕ} .

Introduce now the subspaces $S_{K,\zeta} \subset S_{\varPhi}$ and $S_2 \subset S_{\varPhi}$, where $S_{K,\zeta}$ is defined for each K, ζ as spanned by the basis vectors $\varPhi_{i=1...d_{\zeta}}$, d_{ζ} being the dimension of $S_{K,\zeta}$. By definition each \varPhi_i is associated with a Slater determinant of S_{ϕ} , comprising n pairs, all having the same K and ζ . Hence the characteristic property of each \varPhi_i is that its pair configuration expansion, as given in Eq. (5), involves a particular value γ so that the tensor product yielding $\varPhi_{i,\gamma}$ as in Eq. (4) reduces to a single Slater determinant $\phi_{K,\zeta}$ containing n of pairs K, ζ . Consequently every number of pairs K', ζ' in $\varPhi_{i,\gamma}$ where K' and ζ' take all possible values different from K and ζ respectively, vanish for every $\varPhi_{i,\gamma}$. Inversely the subspace S_2 is spanned by the basis vectors $\varPhi_{p=1...d_2}$ of S_{\varPhi}, d_2 being the dimension of S_2 . Each \varPhi_p is characterised by $n_{K,\zeta,\beta} < n$ for every K, ζ, β value where β is the pair configuration index of \varPhi_p and $n_{K,\zeta,\beta}$ stands for the number of pairs K, ζ in $\varPhi_{p,\beta}$. As the subspaces S_2 and $S_{K,\zeta}$ are disjoint, they provide a basis for S_{\varPhi} .

Consider now the following expression for the Hamiltonian H' operating in $S_{\otimes \phi}$:

$$H' = \sum_{i,j} \langle \phi_i | H | \phi_j \rangle | \Phi_{i,\gamma} \rangle \langle \Phi_{j,\gamma} | + \sum_{p,q,\beta} m_{pq} \langle \phi_p | H | \phi_q \rangle | \Phi_{p,\beta} \rangle \langle \Phi_{q,\beta} |, \tag{6}$$

where the sum with respect to i, j is performed on all Slater determinants ϕ_i and ϕ_j associated respectively with $\Phi_i \in S_{K,\zeta}$ and $\Phi_j \in S_{K,\zeta}$ characterised by the pair configuration γ . The sum with respect to p, q is carried over all Φ_p and Φ_q such that Φ_p or Φ_q belong to S_2 . The sum with respect to β is made with $m_{pp} = 1/m$ and $m_{pq} = (2n-1)/m$ over all pair configurations common to Φ_p and Φ_q . This definition of H' in Eq. (6) ensures that the matrix elements $\langle \Phi_e | H' | \Phi_f \rangle$, where H' is given by Eq. (6), and $\langle \phi_e | H | \phi_f \rangle$, where H is given by Eq. (1), are equal for all $e, f = 1 \dots d_{\phi}$ values where ϕ_e, ϕ_f are two Slater determinants of S_{ϕ} and Φ_e, Φ_f are the corresponding basis vectors of S_{Φ} . This ensures that the Schrödinger

equations $(H - \epsilon)\psi = 0$ and $(H' - \epsilon)\Psi = 0$, where $\psi \in S_{\phi}$ and $\Psi \in S_{\Phi}$, have the same spectrum of eigenvalues ϵ .

Since H' in Eq. (6) does not display such terms as $|\Phi_{p,\alpha}\rangle\langle\Phi_{q,\beta}|$ which would mix two different pair configurations α and β , the Schrödinger equation $(H' - \epsilon)\Psi = 0$ splits into partial Schrödinger equations

$$(H'-\epsilon)\Psi = 0, \quad \Psi = \sum_{e=1}^{d_{\phi}} a_e \Phi_e, \quad \Phi_e = \sum_{\alpha=1}^{m} \Phi_{e,\alpha} \Rightarrow (H'-\epsilon)\Psi_{\alpha} = 0,$$
$$\Psi_{\alpha} = \sum_{e=1}^{d_{\phi}} a_e \Phi_{e,\alpha}, \quad \Psi = \sum_{\alpha} \Psi_{\alpha}, \tag{7}$$

where the coefficients a_e are real, the sum over α is the pair configuration expansion of Φ_e , and Ψ_{α} belongs to $S_{\otimes \phi}$.

5. Proof of the theorem

Consider the Schrödinger equation $(H'-\epsilon)\Psi = 0$ where H' is given by Eq. (6) and the eigenvector $\Psi \in S_{\Phi}$ is assumed to have a non-vanishing projection in $S_{K,\zeta}$ and thus reads

$$\Psi = \Psi_{K,\zeta} + \Psi', \quad \Psi_{K,\zeta} = \sum_{i=1}^{d_{\zeta}} a_i \Phi_i, \quad \Psi' = \sum_{p=1}^{d_2} a_p \Phi_p, \tag{8}$$

where the coefficients a_i, a_p are real and the Φ_i 's and Φ_p 's are basis vectors of $S_{K,\zeta}$ and S_2 , respectively. We now apply Eq. (7) to Ψ for the particular pair configuration γ :

$$(H' - \epsilon)\Psi_{\gamma} = 0, \quad \Psi_{\gamma} = \Psi_{K,\zeta,\gamma} + \Psi_{\gamma}'. \tag{9}$$

As the vector Ψ' is inferred from its definition not to contribute to Ψ_{γ} , it ensues that Ψ_{γ} reduces to $\Psi_{K,\zeta,\gamma}$. Because of $\langle \phi_i | H | \phi_j \rangle = \langle \phi_i | H_D + H_{K,\zeta} | \phi_j \rangle$ which holds for the Hamiltonians H_D and $H_{K,\zeta}$ in Eq. (2) and any two Slater determinants ϕ_i, ϕ_j associated with the basis vectors Φ_i, Φ_j of $S_{K,\zeta}$, it comes finally

$$(H' - \epsilon)\Psi_{\gamma} = 0 \Rightarrow (H_{\rm D} + H_{K,\zeta} - \epsilon)\Psi_{K,\zeta,\gamma} = 0$$

$$\Leftrightarrow (H_{\rm D} + H_{K,\zeta} - \epsilon)\psi_{K,\zeta} = 0, \tag{10}$$

where $\psi_{K,\zeta} \in S_{\phi}$ is in one to one correspondence with $\Psi_{K,\zeta} \in S_{\phi}$. Equation (10) means that if $(\psi_{K,\zeta} + \psi')$ and ϵ are eigenvector and eigenvalue of H in S_{ϕ} , the vector $\psi_{K,\zeta}$ and ϵ are eigenvector and eigenvalue of $(H_{\rm D} + H_{K,\zeta})$ in S_{ϕ} too. To complete the proof of theorem it must be shown in addition that every eigensolution $\psi_{K,\zeta}$, ϵ of $(H_{\rm D} + H_{K,\zeta})$ gives rise to an eigensolution ψ, ϵ of H. The latter will be proved now by contradiction. Suppose that there is an eigenvalue of some Hamiltonian $(H_{\rm D} + H_{K,\zeta})$ which is not an eigenvalue of H. Then the corresponding $S_{K,\zeta}$ will contribute only $(d_{\zeta} - 1)$ eigenvalues instead of d_{ζ} to the spectrum of H, which will result in an uncomplete diagonal basis for H and is thus at odds with the property of H being hermitian. Q.E.D.

Because $\psi_{K,\zeta}$ and the BCS variational state [2] consist both of a linear combination of Slater determinants of pairs having the same K, ζ , they are characterised by off-diagonal long-range order [3]:

$$f_{odlro}(|\tau|) = \sum_{i,j,l,m,\eta} \langle \phi | \hat{c}^{\dagger}_{i,\sigma} c^{\dagger}_{j,\eta\sigma} c_{m,\eta\sigma} c_{l,\sigma} | \phi \rangle, \qquad (11)$$

Off-Diagonal Long-Range Order ...

where $\eta = \pm 1$, the Wannier operator $c_{i,\sigma}^{(+)}$ destroys (creates) an electron with spin σ at site *i* labeled by the lattice vector r_i , $(r_j - r_i) = (r_m - r_l) = \rho$, $(r_i - r_l) = \tau$. The two-body correlation function $f_{odlro}(|\tau|)$ is calculated at ρ kept fixed. The state $\phi \in S_{\phi}$ is said to have off-diagonal long-range order if $f_{odlro}(|\tau|)$ oscillates without decaying to zero for $|\tau| \to \infty$. Because for $\psi_{K,\zeta}$ and the BCS state it comes $f_{odlro}(|\tau|) = \cos(K\tau)\Delta$ where $\Delta = \sum_{k,k'} \cos[(k-k')\rho] \langle b_{\zeta}^{+}(k,K-k)b_{\zeta}(k',K-k') \rangle$, these both states are seen to have off-diagonal long-range order provided $\Delta \neq 0$.

6. Conclusion

The conclusion of the theorem is valid for arbitrary crystal dimension, electron concentration and two-electron coupling provided it conserves K and ζ . It enables one to find out all eigenstates of H having off-diagonal long-range order on a cluster of size considerably larger than currently reached, because the dimension of $S_{K,\zeta}$ is much smaller than that of S_{ϕ} .

I dedicate this work to the memory of my parents Jochweta and Chaim and my niece Denise Lévy and I thank my wife Rachel and children Jérémie and Judith for providing encouragement.

References

[1] M.W. Long, Int. J. Mod. Phys. B 5, 865 (1991).

[2] J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957).

[3] C.N. Yang, Phys. Rev. Lett. 63, 2144 (1989).

[4] J. Hubbard, Proc. R. Soc. A 276, 238 (1963).

[5] J. Szeftel, Acta Phys. Pol. A 85, 329 (1994).

[6] J. Szeftel, Physica B 206-207, 705 (1995).