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OFF-DIAGONAL LONG-RANGE ORDER
IN MANY-ELECTRON PROBLEM
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The interacting electron Hamiltonian H = HD + ΣK c HK,ς is consid-
ered in the Hilbert space spanned by Slater determinants of Bloch wave func-
tions. HD consists of the diagonal part of H in this basis. K and = 0, ±1
stand for the total momentum and projected spin of electron pairs and HK,,
is the off-diagonal part of H describing the most general two-electron scat-
tering process conserving K and S. It is shown that the eigenspectrum of H
includes all eigenvalues of HD +HK,ς for every K and C value. The associated
eigenvectors of H are shown to have off-diagonal long-range order.

PACS numbers: 03.65.—w, 71.45.—d, 74.20.-z

1. Introduction

The interest for the study of electron correlations in metals has kept grow-
ing because of their significance in magnetism and superconductivity [1, 2]. This
work presents a mathematical proof that H, a general many-body Hamiltonian,
operating in So, the Hilbert space spanned by Slater determinants, has numerous
eigenstates characterised by having off-diagonal long-range order [3] which was
introduced as a fingerprint of the BCS state [2]. To work out the proof, it is neces-
sary to introduce an auxiliary Hilbert space S®Φ which is built over a set of pairs
characterised by their total momentum K and projected spin C.

2. The many-body Hamiltonian

A crystal of arbitrary dimension, containing N sites and 2n electrons where
N » 1 and n » 1 is considered hereafter. These electrons populate a single band
of dispersion E(k) where k is a vector of the Brillouin zone. E(k) is assumed to
be independent of the electron spin o = 11/2. The Pauli principle requires that
n < N. The total system Hamiltonian H can be written in reciprocal space as

The Fermi operators ck O
 and ck, σ account for electron creation and annihilation

on the Bloch state k, a. The real coefficients V (K, k, k') are the matrix elements
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of the two-electron scattering process. The summations in Eq. (1) are carried out
over all possible values of K, k, k' in the Brillouin zone under the constraint of spin
conservation a l +0-2 = C3+ u4 . The Hamiltonian H describes the electron motion
in the Hilbert space S1, of dimension do. Each basis vector q5% with i = 1 ... do is
a Slater determinant involving 2n one-electron Bloch states.

It is convenient to introduce the pair creation and annihilation operators
b±1(k, k') = ek faek ±σ „ b±1(k, k') = ck',±σck,±σ, bó (k, k') = ck σ ck b0(k, k')
= ck',_σck,σ. The subscript = 0, ±1 stands for the projection of the total spin
of the pair. It is useful to recast the Hamiltonian H of Eq. (1) in terms of the
subsidiary Hamiltonians HD, HK,ς as H = HD + ΣK,ς=0,±1 HK,ς where HD and
HK,ς read as

The purpose of this article is to demonstrate the following theorem charac-
terising a class of eigensolutions φ, e of the Schrödinger equation (H — e) = O
where H is given by Eq. (1) and z/i belongs to the Hilbert space So:

3. Theorem
To each eigensolution φK,ς, e where (HD + HK,ς — ε)ψK,ς = 0, there corre-

sponds an eigensolution φ,c of H such that (H — 	 = O.
Furthermore it will be shown that has of[-diagonal long-range order. Al-

though it is easy to prove [4] this theorem in So for a single pair (n = 1), it
becomes necessary to treat the problem in an auxiliary Hilbert space [5,6] Soo for
n>1.

4. Properties of S®"

Any Slater determinant Φi of S, can be written as

where 10) designates the no-electron state and all pairs bς (kj, K — kj) I0) having
the same K and have been regrouped together. In the product with respect to
the index j, the i dependence of j has been dropped for simplicity. The integer
nK,ς > O designates the total number of pairs characterised by K, C in i, and the
nK,ς's satisfy ΣK,ς nK,ς = n. The basis vector Φi,α of Soo is defined from ¢j as
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where the tensor product replaces the simple product HK,ς of Eq. (3) and each
φK,ς is a Slater determinant containing nK,ς of pairs K, C. The sequence of integers
{nK,ς} in Eqs. (3), (4) defines uniquely the pair configuration a of Φi As a large
number of linearly independent vectors i,« E S®Φ are characterised by the same
pair configuration a, nK,ς does not depend on the index i but conversely depends
on the index a and will therefore be denoted nK , ς a in the following. The whole
set of pair configurations of i is obtained by selecting m permutations of 2n
one-electron Bloch states defining i. The basis vectors i,« of S o o are generated
by allowing the subscripts i = 1 ... do and a = 1... m to run over all possible
values, which implies that the dimension of S®i, is equal to mdi,. The SPi, « 's are
chosen to be orthonormal.

The subspace So C S® 4, is then introduced as spanned by the basis vectors
Φi defined by

where the sum is carried over m pair configurations a of .j. Owing to the one to
one correspondence between i E So and Φi E So, the dimension of Ss is inferred
to be equal to do.

Introduce now the subspaces SK,ς C So and 52 C where SK,ς is defined
for each K,C as spanned by the basis vectors Φi=1...dς, dς being the dimension of
SK,ς. By definition each i is associated with a Slater determinant of S4,, compris-
ing n pairs, all having the same K and C. Hence the characteristic property of each
i is that its pair configuration expansion, as given in Eq. (5), involves a particular
value -y so that the tensor product yielding ^i  as in Eq. (4) reduces to a single
Slater determinant ΦK,ς containing n of pairs K, C. Consequently every number of
pairs K',(' in Φi,γ where K' and C' take all possible values different from K and

respectively, vanish for every 41. i,7 . Inversely the subspace 52 is spanned by the
basis vectors Φp=1...d2of SΦ, d2being the dimension of82.EachOpis characterised
by nK,ς,β < n for every K, („6 value where ,Q is the pair configuration index of Φ p
and nK,ς,β stands for the number of pairs K, C. in Φp,β. As the subspaces S2 and
SK,ς are disjoint, they provide a basis for S^.

Consider now the following expression for the Hamiltonian H' operating in
S® ^:

where the sum with respect to i, j is performed on all Slater determinants i and
O, associated respectively with i E SK,ς and E SK,ς characterised by the pair
configuration y. The sum with respect to p, q is carried over all Op and 4 q such
that Φp or Φq belong to S2. The sum with respect to f3 is made with mpp = 1/m
and mpg = (2n — 1)/m over all pair configurations common to Op and q. This
definition of H' in Eq. (6) ensures that the matrix elements (0,1H101), where
H' is given by Eq. (6), and (Φe|H|Φf), where H is given by Eq. (1), are equal
for all e, f = 1... do values where Φe, Of are two Slater determinants of So and
Φe, Of are the corresponding basis vectors of This ensures that the Schrödinger
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equations (H —e)ψ=0 and (H' — e)ψ = 0, where ψ E So and W E Sφ, have the
same spectrum of eigenvalues c.

Since H' in Eq. (6) does not display such terms as 10p ,« ) (Φq,β |which would
mix two different pair configurations α and β, the Schrödinger equation
(H' — e)Ψ= 0 splits into partial Schrödinger equations

where the coefficients αe are real, the sum over a is the pair configuration expansion
of 0 e , and Ψα belongs to S®Φ.

5. Proof of the theorem
Consider the Schrödinger equation (H' —e) = 0  where H' is given by Eq. (6)

and the eigenvector W E is assumed to have a non-vanishing projection in SK,,
and thus reads

where the coefficients αi, αp are real , and the Φi's and Φp's are basis vectors of
SK,ς and S2, respectively. We now apply Eq. (7) to W for the particular pair
configuration y:

As the vector W' is inferred from its definition not to contribute to Ψγ, it ensues
that Ψγ reduces to ΨK,ς,γ. Because of (Φi IHIΦj) = (i IHD -F HK,ς IΦj) which holds
for the Hamiltonians HD and HK,ς in Eq. (2) and any two Slater determinantsΦj

 associated with the basis vectors Φi,Φj of SK,(, it comes finally

where ψK,ς E So is in one to one correspondence with ΨK,ς E So. Equation (10)
means that if (ΨK,ς+Ψ) and c are eigenvector and eigenvalue of H in So, the vector
ΨK,ς and a are eigenvector and eigenvalue of (HD 4 HK,ς) in So too. To complete
the proof of theorem it must be shown in addition that every eigensolution ΨK ς , e
of (HD + HK,ς) gives rise to an eigensolution b , e of H. The latter will be proved
now by contradiction. Suppose that there is an eigenvalue of some Hamiltonian
(HD + HK,ς) which is not an eigenvalue of H. Then the corresponding SK,ς will
contribute only (dς — 1) eigenvalues instead of dς to the spectrum of H, which will
result in an uncomplete diagonal basis for H and is thus at odds with the property
of H being hermitian. Q.E.D.

Because K,ς and the BCS variational state [2] consist both of a linear combi-
nation of Slater determinants of pairs having the same K,(, they are characterised
by off-diagonal long-range order 1.31:
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where 77 = ±1, the Wannier operator c; o ) destroys (creates) an electron with spin
σ at site i labeled by the lattice vector ri, (rj — ri ) = (r,,, — rl) = p, (ri - rl) = T.
The two-body correlation function  fodlro(|τ|)) is calculated at p kept fixed. The
state q E Są, is said to have off-diagonal long-range order if fodlro(Iτ|) oscillates
without decaying to zero for |r| —> oo. Because for ψK,ς and the BCS state it comes
fodlro(IτI) = cos(Kr)Δ where Δ= Σk k' cos[(k—k')p](b+ (k, K—k)bς(k', K—k")),
these both states are seen to have off-diagonal long-range order provided 6 = O.

6. Conclusion

The conclusion of the theorem is valid for arbitrary crystal dimension, elec-
tron concentration and two-electron coupling provided it conserves K and C. It
enables one to find out all eigenstates of H having off-diagonal long-range order on
a cluster of size considerably larger than currently reached, because the dimension
of SK,ς is much smaller than that of So.

I dedicate this work to the memory of my parents Jochweta and Chaim and
my niece Denise Levy and I thank my wife Rachel and children Jérémie and Judith
for providing encouragement.
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