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OFF-DIAGONAL LONG-RANGE ORDER
IN MANY-ELECTRON PROBLEM
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The interacting electron Hamiltonian H = Hp + ), ¢ Hr ¢ is consid-
ered in the Hilbert space spanned by Slater determinants of Bloch wave func-
tions. Hp consists of the diagonal part of H in this basis. K and ¢ = 0, =1
stand for the total momentum and projected spin of electron pairs and Hx,¢
is the off-diagonal part of H describing the most general two-electron scat-
tering process conserving K and (. It is shown that the eigenspectrum of H
includes all eigenvalues of Hp + Hx ¢ for every K and  value. The associated
eigenvectors of H are shown to have off-diagonal long-range order.

PACS numbers: 03.65.-w, 71.45.-d, 74.20.-z

1. Introduction

The interest for the study of electron correlations in metals has kept grow-
ing because of their significance in magnetism and superconductivity [1,2]. This
work presents a mathematical proof that H, a general many-body Hamiltonian,
operating in Sy, the Hilbert space spanned by Slater determinants, has numerous
eigenstates characterised by having off-diagonal long-range order [3] which was
introduced as a fingerprint of the BCS state [2]. To work out the proof, it is neces-
sary to introduce an auxiliary Hilbert space Sgg which is built over a set of pairs
characterised by their total momentum K and projected spin (.

2. The many-body Hamiltonian

A crystal of arbitrary dimension, containing N sites and 2n electrons where
N > 1 and n > 1 is considered hereafter. These electrons populate a single band
of dispersion E(k) where k is a vector of the Brillouin zone. E(k) is assumed to
be independent of the electron spin o = £1/2. The Pauli principle requires that
n < N. The total system Hamiltonian H can be written in reciprocal space as

H= SE®E cnet+ D, VIE K,k to,cK-kosChos (1)
k,o - K,k,k'0iz1,...,4

The Fermi operators cz' , and ¢ o account for electron creation and annihilation

on the Bloch state k, 0. The real coefficients V(K k, k') are the matrix elements -

(341)
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of the two-electron scattering process. The summations in Eq. (1) are carried out
over all possible values of K, k, k in the Brillouin zone under the constraint of spin
conservation o + 03 = 03+ 4. The Hamiltonian H describes the electron motion
in the Hilbert space Sy of dimension dy. Each basis vector ¢; with i = 1...dy is
a Slater determinant involving 2n one-electron Bloch states. '

It is convement to introduce the pair creation and annihilation operators
b, (k, k) = Ck +0C 100 Dx1(k E') = Crr ol 20, b (k, k') = c',i‘ocz', , bo(k, k')
= Ckt,~oCk,o- The su script ¢ = 0,+1 stands for the projection of the total spin
of the pair. It is useful to recast the Hamiltonian H of Eq. (1) in terms of the
subsidiary Hamiltonians Hp, Hx,¢ as H = Hp + ) g ¢=¢ +1 Hx,c where Hp and
Hg ¢ read as

Hp = Z E(k)c,tack,,, + Z V(k‘ + k’, k, k)c;‘l;,o.ck’gc;:,’_ackl’_g

ko kk!
+ 3 Vb k) = V(E+E kK e e ol 00,
k,klo
Hxo= Y, V(K kF)WE (kK - k)bo(K, K - k'),
kk'Ek
Hgx1= Y, V(EkEWL KK - Eba, K - k). (2)
kk'#(k,K—k)

The purpose of this article is to demonstrate the following theorem charac-
terising a class of eigensolutions v, € of the Schrodinger equation (H — €)y = 0
where H is given by Eq. (1) and 9 belongs to the Hilbert space Sy:

3. Theorem

- To each eigensolution Yk ¢, ¢ where (Hp + Hi,c — €)Yk,c =0, there corre-
sponds an eigensolution v, ¢ of H such that (H — €)1 = 0.

Furthermore it will be shown that 1 has off-diagonal long-range order. Al-
though it is easy to prove [4] this theorem in Sy for a single pair (n = 1), it
becomes necessary to treat the problem in an auxiliary Hilbert space [5,6] Sg¢ for
n> 1.

4. Properties of Sgg

Any Slater determinant ¢; of Sy can be written as

ng,¢ :
=11 (H bzf(kj,ff—kj)) 0), (3)
K¢ \j
where |0) designates the no-electron state and all pairs bf (k;, K — k;)|0) having
the same K and ¢ have been regrouped together. In the product w1th respect to
the index j, the ¢ dependence of j has been dropped for simplicity. The integer
nk,¢ > 0 designates the total number of pairs characterised by K, ¢ in ¢;, and the
nk,¢’s satisfy ZK( nk, = n. The basis vector @; o of Sg¢ is defined from ¢, as
nK,.¢
@,a—®¢[{(, ¢KC— Hb+(k.7’1{ k)IO) (4)

K,
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where the tensor product replaces the simple product 1§ I% ¢ of Eq. (3) and each
@K ¢ is a Slater determinant containing n k¢ of pairs K, (. The sequence of integers
{nk,} in Egs. (3), (4) defines uniquely the pair configuration « of ¢;. As a large
number of linearly independent vectors ®; o € Sg¢ are characterised by the same
pair configuration «, nk,¢ does not depend on the index i but. conversely depends
on the index o and will therefore be denoted nx ¢ o in the following. The whole
set of pair configurations of ¢; is obtained by selecting m permutations of 2n
one-electron Bloch states defining ¢;. The basis vectors &; « of Sg¢ are generated
by allowing the subscripts 1 = 1.. .dg and @ = 1...m to run over all possible
values, which implies that the dimension of Sg¢ is equal to mdy. The &; o’s are
chosen to be orthonormal. :

The subspace Sg C Sgg4 is then introduced as spanned by the basis vectors
&; defined by ' :

. m
9 = Zdji,a, : (5)
a=1 :

where the sum is carried over m pair configurations & of ¢;. Owing to the one to
one correspondence between ¢; € Sy and &; € Sz, the dimension of Sg is inferred
to be equal to dy.

Introduce now the subspaces Sk ¢ C Sg and S3 C Sg, where Sk ¢ is defined
for each K, ( as spanned by the basis vectors Di=1..4,, d¢ being the dimension of
Sk ¢ - By definition each @; is associated with a Slater determinant of Sy, compris-
ing n pairs, all having the same K and ¢. Hence the characteristic property of each

* @; is that its pair configuration expansion, as given in Eq. (5), involves a particular
value v so that the tensor product yielding &; ., as in Eq. (4) reduces to a single
Slater determinant ¢x ¢ containing n of pairs K, (. Consequently every number of
pairs K',¢’ in @; , where K’ and ¢’ take all possible values different from K and
¢ respectively, vanish for every @; .. Inversely the subspace S is spanned by the
basis vectors @,-1..4, of S¢, da being the dimension of S5. Each @, is characterised
by nk ¢ s < n for every K, (, 8 value where § is the pair configuration index of &,
and ng ¢ g stands for the number of pairs K, in $, s. As the subspaces S; and
Sk, are disjoint, they provide a basis for Ss.

Consider now the following expression for the Hamiltonian H’ operating in

S®¢I
H' =) (6l HIGi)Din) (Diy| + Y mpg (1 H164)|P5,6)(Pg 1, (6)

i,J ,9,8

where the sum with respect to 4, j is performed on all Slater determinants ¢; and
¢; associated respectively with @; € Sk,¢ and @; € Sk ¢ characterised by the pair
configuration 4. The sum with respect to p, q is carried over all &, and &, such
that @, or @, belong to S;. The sum with respect to 8 is made with my, = 1/m
and mpg = (2n — 1)/m over all pair configurations common to &, and @,. This
definition of H' in Eq. (6) ensures that the matrix elements (@.|H’|®;), where
H' is given by Eq. (6), and (@¢|H|¢s), where H is given by Eq. (1), are equal
for all e, f = 1...dy4 values where ¢, ¢; are two Slater determinants of Sy and
®,,P; are the corresponding basis vectors of Sg. This ensures that the Schrodinger
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equations (H — €)¢p = 0 and (H' — €)¥ = 0, where ¢ € Sy and ¥ € Sg, have the
same spectrum of eigenvalues e.

Since H' in Eq. (6) does not display such terms as |$; o)(P,,5| which would
mix two different pair configurations a and B3, the Schrodinger equation
(H' — €)¥ = 0 splits into partial Schrodinger equations '

. dg m
(H '—e)w=o U= ad., Gc=) Peo=>(H —Wa=0,
e=1 a=1
Vo = Zae¢e a U= ZWM . (7)
e=1
where the coefficients a, are real, the sum over « is the pair configuration expansion
of &., and ¥, belongs to Sgg¢.

5. Proof of the theorem
Consider the Schrédinger equation (H’—e)¥ = 0 where H' is given by Eq. (6)
and the eigenvector ¥ € Sg is assumed to have a non-vanishing projection in Sk ¢
and thus reads '

U=Ugo+V, Uke= ab, V=) a0, , (8)

where the coefficients a;,a, are real and the @;’s and &,’s are basis vectors of
Sk,¢ and Sa, respectively. We now apply Eq. (7) to ¥ for the particular pair
* configuration v:

. (H’__C)W,Y:O’ ‘ W7=WK,C;'Y+W’;" (9)
As the vector ¥’ is inferred from its definition not to contribute to ¥., it ensues
that ¥, reduces to ¥k, ¢ . Because of (¢;|H|¢;) = (¢:|Hp + Hx ¢|$;) which holds
for the Hamiltonians Hp and Hg ¢ in Eq. (2) and any two Slater determinants
$i,¢; associated with the basis vectors @;,P; of Sk ¢, it comes finally

(H'—e)¥y = 0= (Hp + Hr,( — ¥k v =0

< (Hp + Hi,c — €)¥K, =0, (10)
where Y ¢ € Sy is in one to one correspondence with ¥x ¢ € Sg. Equation (10)
means that if (yx ¢+v’) and € are eigenvector and eigenvalue of H in Sy, the vector
%K, and € are eigenvector and eigenvalue of (Hp + Hg,¢) in Sy too. To complete
the proof of theorem it must be shown in addition that every eigensolution 9k ¢, €
of (Hp + Hx,¢) gives rise to an eigensolution %, ¢ of H. The latter will be proved
now by contradiction. Suppose that there is an eigenvalue of some Hamiltonian
- (Hp + Hg ) which is not an eigenvalue of H. Then the corresponding Sk,¢ will
contribute only (d¢ — 1) eigenvalues instead of d; to the spectrum of H, which will
result in an uncomplete diagonal basis for A and is thus at odds with the property
of H being hermitian. Q.E.D.
Because ¥ ¢ and the BCS variational state [2] consist both of a linear combi-
nation of Slater determinants of pairs having the same K, ¢, they are characterised
by off-diagonal long-range order [3]:

fodlro(lrl) = z (¢Ic;a J’,’acm,nacl,al¢), (11)

i’jlliml',
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where 7 = £1, the Wannier operator c(+) destroys (creates) an electron with spin
o at site 7 labeled by the lattice vector ri,(rj =) =(m—-m)=p, (ri—-m)=r.
The two-body correlation function fogro(|7|) is calculated at p kept fixed. The
state ¢ € Sy is said to have off-diagonal long-range order if foairo(|7|) oscillates
without decaying to zero for |7| — co. Because for ¢x,¢ and the BCS state it comes
Jodiro(|7]) = cos(KT)A where A =3, 1, cos[(k— k’)p](b+(k K—k)be (K, K —k")),
these both states are seen to have off-diagonal long—range order prov1ded A#0.

6. Conclusion

The conclusion of the theorem is valid for arbitrary crystal dimension, elec-
tron concentration and two-electron coupling provided it conserves K and (. It
enables one to find out all eigenstates of H having off-diagonal long-range order on
a cluster of size considerably larger than currently reached, because the dimension
of Sk ¢ is much smaller than that of Sy.

I dedicate this work to the memory of my parents Jochweta and Chaim and
my niece Denise Lévy and I thank my wife Rachel and children Jérémie and Judith
for providing encouragement.
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