
into the components corresponding to the ferromagnetic slabs A and B. We have
obtained the following formulae for the coupling (taking mA • mB = mAmB cosν r9^
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ical formulae for the coupling which are obtained from the energy potential
of the spin-polarized electron gas. The formulae for the coupling are obtained
in the framework of the Hohenberg-Kohn formalism of the density functional
theory and variables of the coupling are the electron density and the spin
polarization of the magnetic multilayer.

PACS numbers: 75.70.-i, 73.20.-r

In the field of the interlayer coupling of magnetic multilayers, the authors of
early papers have assumed that the interlayer coupling energy is Heisenberg-like.
However, experiments [1] imply that the Heisenberg-like interlayer coupling is too
crude to describe the coupling. Slonczewski [2] proposed that the magnetostatic
interaction induced by a roughness can lead to a biquadratic term. Several authors
proposed other intrinsic mechanisms (e.g. [3, 4]). In this paper we propose analyti-
cal formulae for the coupling derived from the energy potential of the spin-polarized
electron gas. Spin polarized systems were reviewed by Kohn and Vashishta [5]. We
take the spin polarization in the kinetic and exchange terms of the energy potential
into account.

In this paper, we consider two ferromagnetic slabs separated by a noble
metal layer. Numerical calculations are performed for a trilayer Fe/Cu/Fe. The
exchange coupling is defined as: J = —J0 cos 19 — J1 sine /9, where t9 is an angle
between the magnetic moments (polarization directions of the T25 up d-electrons).
The bilinear, J0, and the biquadratic, J1, exchange terms are obtained using the
energy potential of the spin-polarized electron gas. The spin polarization, m, is
decomposed, 

(265)
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Here, n is the local electron density, kF(n) = (3π2 n )1 /3 , εx(n) — the exchange
energy in the local density approximation, m — the electron mass, A — the area
of the multilayer and mA and mB are the spin polarization connected with the
magnetic slabs A and B, respectively. Our formulae for the coupling are given in
terms of the electron density and the spin polarization of the multilayer.

The spin densities of the valence electrons at the interface are calculated
by . applying a method described in Ref. [6], which was used for calculations of
the electron density at a metal surface. The spin density of the valence electrons
at the interface is calculated in the Lang–Kohn jellium, where the density of the
external charge serves as a parameter. We calculate the spin densities with up and
down spins independently. The density of the external charge corresponds to the
spin density of the valence electrons for the bulk materials, e.g. calculating the
spin density of the up valence electrons, the density of the positive background
and the bulk down electron density serve as an effective external charge. The
induced polarization at the interface Fe/Cu is used for numerical estimation of the
coupling. If the spacer does not contain Fe impurities, the main contribution to the
coupling comes from the magnetic slabs at the interfaces since the polarization of
the nonmagnetic metal is small in comparison with the spontaneous polarization
of the magnetic slabs. In the numerical calculation of the coupling, the density of
the Fe d-electrons (divided into the core T25 up electrons and the valence electrons)
is taken only. The spin polarization of the valence Fe electrons is pointed in the
opposite direction with respect to the polarization of the T25 up electrons, since the
kinetic energy does not prefer the spin polarization and is greater in comparison
with the exchange term of the energy potential. The spin polarization of the bulk
Fe valence electrons is obtained by taking equations for the electron density and the
spin polarization of the d-electrons. The ratio (spontaneous polarization/density of
d-electrons) weakly depends on the space coordinate and is taken to be constant,
in our numerical estimation of the coupling. The bilinear and biquadratic coupling
vs. the number of monolayers, Ncu, of the spacer are shown in Figs. 1 and 2.

In this paper, general analytical formulae for the bilinear and biquadratic
coupling are given. The electron density and the spin polarization of the magnetic
multilayer serve as variables. The mechanism of the coupling is based on the effect
of the magnetic configuration on the spin polarization of the magnetic multilayer.
The coupling is estimated numerically within a jellium approximation and calcu-
lations restricted \ to the d-electrons of magnetic bulk layers. The couplings vs. the
number of monolayers of the spacer are shown in Figs. 1 and 2. The calculated
value of the amplitude of the bilinear coupling is somewhat greater in compari-
son with experimental data for ultrathin multilayers, cf. [7]. The bilinear coupling
shows two oscillation periods. The biquadratic coupling strongly decreases with
the thickness of the spacer layer and for a big thickness is three orders of magni-
tude smaller than experimental data [7]. This discrepancy is due to the presence of
Fe atoms in the nonmagnetic layer of the real magnetic multilayers. The impurity
Fe atoms change the polarization of the spacer layer and strongly intensify the
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Fig. 1. The oscillatory bilinear coupling, J0 , vs. the number of monolayers Ncu of the
spacer Cu film.

Fig. 2. The biquadratic coupling, .h, vs. the number of monolayers Ncu of the spacer
Cu film.

biquadratic coupling. Admixture of magnetic atoms, in the spacer layer, leads to
the high dependence of the coupling on the temperature. Our biquadratic coupling
is in a qualitative agreement with the result of Ref. [8]. We hope to improve our
numerical results by calculating the electron density in the Hohenberg—Kohn for-
malism of the density functional theory and the core T2 g d-electrons solving the
Kohn—Sham equation.
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