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Using the scaling theory of quantum critical phenomena we explore the
occurrence of universal critical behavior at the insulator-to-superconductor
and superconductor-to-normal state transitions at zero temperature. Exper-
imentally, these phase transitions are driven by doping and correspond to
critical end points of the phase transition łine in the temperature-hole con-
centration plane. Provided that the order parameter is a complex scalar in
two dimensions, and that the London relation between superfluid number
density and magnetic penetration depth holds, the scaling theory predicts
universal behavior close to the insulator-to-superconductor transition. In
particular, transition temperature and zero temperature penetration depth
are universally related and the sheet resistance adopts a universal value.
These predictions agree remarkably well with available experimental data
and provide useful constraints for a microscopic theory.

PACS numbers: 74.72.—h, 74.25.—q, 74.62.—c, 74.62.Dh

Many physical properties of cuprate superconductors depend on hole dop-
ing. The generic doping dependence of the transition temperature Tc is depicted
in Fig. 1. At a certain doping level, the so-called underdoped limit, these mate-
rials undergo at the hole concentration x„ and T > O a transition from insulator
to anomalous metal, and at T = O a transition from insulator to superconduc-
tor. As x is increased, Tc rises and reaches its maximum at x m . This behavior
is shared by many cuprates, including YBa2Cu3O7_δ [1], La 2_xSrx CuO4_δ [2],
Y2Ba4Cu7O15+δ [3],Y1_xPrxBa2Cu3O6.97 [4], Tl2Ba2CuO6+δ [5], Bi2Sr2CuO6+δ ,

Bi2Sr2CaCu2O8+δ [6], and HgBa2 CuO4+δ [7]. In some compounds a further in-
crease in the doping level leads to more metallic normal-state properties [8, 9],
but T, decreases and vanishes in the overdoped limit xo. Here, these materials un-
dergo at T = O a superconductor-to-normal-state transition. A prominent example
is La2_x S rx CuO4_ δ [2].

Another essential and doping-dependent property is the effective mass an-
isotropy, characterized by y =√M/M In optimally doped (x = xm)
YBa2 Cu3O6.97 [10], La2_xSrxCuO4 [11,12], and Bi2Sr2 CaCu2O8 [13], γ  adopts
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Fig. 1. Schematic phase diagram of cuprate superconductors. At T = O and with in-
creasing hole concentration x the materials undergo a 2d to 3d crossover, at x„ an
insulator-superconductor and at x o a superconductor-to-normal state transition. End
point 1 denotes the 2d quantum-critical point of the insulator-to-superconductor transi-
tion and 2 — the anisotropic 3d quantum-critical point of the superconductor-to-normal
state transition. 1 and 2 are the end points of the phase transition line T. (x).
y = √M1/M11 is the effective mass anisotropy.

the values 5, 20, and > 150, respectively. Moreover, in both La2_xS rxCuO4 [12]
and YBa2Cu3O6.97 [10], y becomes very large by approaching the underdoped
limit. Noting then that y -> oo represents the two-dimensional (2d) limit, it be-
comes evident that 2d fluctuations dominate in the underdoped limit, whereas with
increasing doping level a 2d-3d crossover occurs. Nevertheless, for sufficiently large
y values, the regime where 3d fluctuations dominate might be experimentally in-
accessible.

As there is a phase transition line with two end points at T = 0 (1 and 2), a
2d to 3d crossover, and strong evidence of the importance of critical fluctuations at
finite temperature [14,15], it seems natural to explore the problem of a consistent
description of the doping dependence of various superconducting properties with
the scaling theory of quantum critical phenomena [16]. Using this approach we
show that at the critical end point 1 the relations

are universal, provided that the order parameter is a complex scalar in d = 2
and the London relation between superfluid number density and magnetic pene-
tration depth holds. The parameter b = x - x„ measures the distance from the
critical point 1, ds is the thickness of the d = 2 superconducting unit, λ|| (T = 0)
— the magnetic penetration depth parallel to the layers, and p — the sheet re-
sistance. Q 0 and σ0 are constants which adopt model-dependent universal values.
The finite-temperature analog of the relation between Tc(δ) and
λ|| 2 (δ, T = 0) is kBTKT = (Φ2/8π2)dsλ -2(TKT), yielding the universal Nelson-
Kosterlitz jump [17] for i ii 2 (T) at the Kosterlitz-Thouless transition temperature
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TKT in d = 2. In Fig. 2 we depicted μSR data and magnetic measurements in
terms of 71 versus 1/λ (T —> 0) of La2_xSrx CuO4 [18,19], YBa2Cu3O7_δ [1], and
Y1_xPrx Ba2Cu3O6,97 [4]. As T, approaches the critical end point 1 (Fig. 1), the
data merges into the single line

with T, in units of K and λ|| (0) in A. Thus, as far as superconductivity is concerned,
the bulk behaves in the limit x —> xu like a stack of uncoupled 2d units of thickness
ds P.1 Qo x5.7 A.

Fig. 2. Tc versus A 2 (T —> 0) as obtained from ASR and magnetic measurements:
La2_x Srx CuO4 : O, mag, 0, ASR [14, 18,19]; YBa2Cu3O7_δ : V, mag, *, ASR [1, 14];
Y1_xPrxBa2Cu3O6.97 : 0, ASR [4].

Fig. 3. Normalized critical temperature versus in-plane 2d residual resistance taken
from Ref. [20]. The solid curve is a line at which all the data in the underdoped regime
merge. Tc0 denotes the transition temperature of the Zn-free compound.

There is also considerable experimental evidence that the sheet resistance
tends to a universal value at the insulator-to-superconductor transition 1. Fig-
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ure 3 shows T, plotted versus the in-plane 2d resistance per CuO2 plane for
Zn-substituted YBa2Cu3O7_δ and La2_xSrCuO4 [20]. For the underdoped ma-
terials the data collapses onto the solid line, which tends in the limit Tc --> 0 to
6.5 E/. Thus, at the insulator-to-superconductor transition 1 the underdoped com-
pounds exhibit, in agreement with Eq. (1), true metallic and universal resistance.
In contrast, the higher-doped cuprates show quite distinct Tc versus p curves,
which are strongly dependent on the doped-hole concentration. Closely related
behavior has been found in YBa2Cu3O7_δ as the film was thinned down by ion
bombardment [21] and in ultrathin DyBa2Cu3O7_δ films [22]. Superconductivity
was found to disappear roughly at the 8heet resistance 6.5 kΩ.

We have seen that the predictions of the scaling theory of quantum critical
phenomena in d = 2 (Eq. (1)) agree remarkably well with available experimental
data. Noting that this formalism, supplemented by the critical properties of end
points 1 and 2, also describes the asymptotic doping dependence, one expects
this approach to provide a coherent description of the doping dependence of the
superconducting properties. To substantiate this conjecture we begin, following
Ref. [16], with a short sketch of the scaling theory of quantum critical phenomena.
This also serves to derive Eq. (1) and relations used later on.

At T = O a phase transition is driven by quantum fluctuations through pa-
rameters such as the chemical potential. Using this control parameter, the distance
from the critical point is measured in terms of S. At T = O and small δ, one defines
two correlation lengths, via the rate of decay of the Matsubara—Green function:
the usual spatial correlation length in the disordered phase

Indeed, the inherent quantum dynamics determines the temporal evolution, which
is generally different from the spatial evolution. The characteristic frequency scale
„l is determined from the dynamics as Ω cc 41 -2. oc |δ| -2P. Analogous to the
classical hyperscaling expression for the free-energy density, one requires that the
singular part of the free-energy density fs in the correlation volume, fs ą 1 ξiξτ ,
is universal when |δ| —r 0. The parameter 6 denotes the spatial correlation length
in direction (i = (||,1)). Accordingly

Note that ά is defined via —a2 f s/0δ2 = (A±/ά)|δ| . The occurrence of superfiu-
idity is conveniently described in terms of the free energy density in the presence of
an imposed order-parameter twist with wave vector ki. The extension of Eq. (6) is
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from which one derives for the helicity modulus

The related transverse correlation length is then defined as

Equation (8) can be extended to finite temperatures and finite frequency. The
temperature and frequency-dependent helicity modulus is then defined in terms of
the temporal Fourier transform of the current—current correlation function. The
resulting scaling form is

We now assume that there is a line of finite temperature phase transitions Tc(δ)
ending at T = O and b = 0. The scaling form (Eq. (11)) taken at ω = O then
reveals that

Moreover, combining Eqs. (11) and (12), it follows that

Clearly, Qo will adopt a characteristic value within a universality class. Using the
relation between the helicity modulus and the superfluid aerial density in d = 2
(pairs per unit area), as well as the relation between aerial superfluid density andbulk

penetration depth the helicity modulus reduces to

where ds is the thickness of the superconducting units in d = 2. Combining then
Eqs. (14) and (15) we recover the universal relation given in Eq. (1). For d # 2,
however. Eqs. (121 and (131 lead to

with a nonuniversal coefficient of proportionality. It is important to emphasize that
relation (14) holds generally for a system where the order parameter is a complex
scalar, whereas relations (1) and (16) require that the London relation between
the superfluid number density and the magnetic penetration depth holds.

The frequency-dependent conductivity is given by

where 2e is the charge of the pair. Using Eq. (11) and approaching the critical
point at T = 0, ω = 0, and δ = O along a path in such a way that CA() |δ|—zv =
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x, y = Diβ- 1|δ|-zv approach some fixed value x0 and yo, one finds with the aid
of the hyperscaling relation (7)

yielding for d = 2 the limiting universal resistivity given by Eq. (l).
We have seen that the scaling theory yields useful relations between critical

exponents and discloses universal relations between critical amplitudes. It does not
provide, however, the values of the critical exponents and the universal constants.
This is because the universal scaling functions, the critical exponent relation, etc.
are satisfied regardless of the particular universality class. A characteristic feature
of the universality class are the critical exponents. Assuming that the distance
from the critical point 1 is measured by ó = x — xu we obtain from Eqs. (7), (12),
(131 and (151 in d = 2 for the asvmntotic behavior

be universal. The available experimental data for the doping dependence of Tc [2, 20]
and λli (T = 0) [18,19] is shown in Figs. 4 and 5 for La2_xSr CuO4. It is too sparse,
however, to estimate zv, the critical amplitudes ()Il u , r„), and the location of the
critical point (x„). For this reason we explore the consistency with the generic
insulator-to-superconductor transition of preformed pairs, where zv = 1, z = 2,
and v = 1/2 in all dimensions [23]. For x„ 0.05 the dashed lines in Figs. 4 and 5
correspond to the critical amplitudes r„ ti 880 K and l„ P..1 3.84 x 10 5 Lit , yielding
for the universal prefactor in Eq. (1) the estimate 3.38 x 10 8 , which is close to the
value derived from µSR data (Eq. (2)). To strengthen this analysis of the rather
sparse experimental data, we note that the exponents zv = 1, z = 2, and v = 1/2
describe the insulator-to-superconductor transition of preformed pairs. A charac-
teristic feature of this transition is that at finite temperature, close to x„ and
below a mean-field transition temperature, the electrons form pairs, but the true
transition temperature TMF is lowered by the enhanced phase fluctuations in 2d.
Consequently, pairs are expected to occur for T < TMF and the effects of pairing
should then manifest themselves as a suppression of low-energy excitations, that
is, in terms of a gap. The existence of such a gap in underdoped cuprates, opening
below TMF is well confirmed by a variety of measurements, including NMR [24],
optical conductivity [25], and angular resolved photoemission [26].

To present our final application we speculate briefly about applying the scal-
ing theory of quantum critical phenomena to the superconductor-to-normal-state
transition 2 (Fig. 1). The experimental evidence of more isotropic and metallic
normal-state properties in the overdoped regime [8,9, 12] indicates that in this

dopin regime  the two aforementioned  energy scales the binding energy of the
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Fig. 4. T, versus x for La2_xSrxCuO4 taken from Refs. [2,12, 20]. The dashed line is
a fit to Eq. (20) yielding for the critical amplitude the estimate ru=880 K. The solid
curve is a guide to the eye.

Fig. 5. All (T = 0) versus x for La2_x Sr.xCuO4 derived from µSR data of Refs. [18,19].
The dashed line is a fit to Eq. (20) yielding for the critical amplitude the estimate

3.84 x 105 A2 . The solid curve is a guide to the eye.

pairs and the condensation energy approach one another. For these reasons a
BCS—Eliashberg type of superconductivity might be expected. It appears nonethe-
less likely that the asymptotic critical properties of transition 2 are insensitive to
the fermionic degrees of freedom. Indeed, the critical points along the phase tran-
sition line Tc (x) and Bose condensation appear to belong to the same universality
class (3d — xy) [14,15], the difference between the normal bosonic and fermionic
phases notwithstanding. Thus, we expect that the critical properties along the
phase transition line Tc (x)and at the 3d critical end point can be properly de-
scribed in terms of neutral bosons. Relation (16) then reduces to

with a nonuniversal coefficient of proportionality. Moreover, analogous to Eq. (20),
the asymptotic doping dependence of Tc and the zero temperature penetration
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depth au (T = O1 obey

Unfortunately, even for La2_xSrCuO4 (Figs. 4 and 5) the available exper-
imental data is sparse, and reliable estimates for the location of the critical end
point as well as for the associated exponents and amplitudes cannot be extracted.
From Fig. 6, which shows Tc versus σ(T = 0) a λ- 2 (T = 0) for La2_ xSrCuO4_δ ,

HgBa2Cu04+δ, and Tl2Ba2CuO6+δ [27, 28], where the overdoped regime is acces-
sible, there is some evidence of the nonuniversal behavior predicted by Eq. (22).
Indeed, by approaching the critical end point 1, the data of La2_ xSrCuO4_δ and
HgBa2Cu04+δ merge on the line describing the limiting universal behavior close to
the d = 2 insulator-to-superconductor transition, whereas the data for overdoped
materials indicates that the approach to end point 2 is nonuniversal.

Fig. 6. 71 versus o(T = 0) oc λ 2 (T = 0) for La2_xSrxCuO4_δ [18, 19] :
0, HgBa2 CuO4+δ [7] : V and Tl2Ba2CuO6±.δ [27, 28]: A. The solid line corresponds to ,

the limiting universal behavior of Eq. (1) at the insulator-to-superconductor transition.

The considerations presented here are macroscopic and independent of the
underlying pairing mechanism. However, some constraints on a microscopic theory
emerge. (1) The order parameter of the superconducting state appears to be well
described by a complex order parameter with an amplitude and phase. (2) The
agreement between experimental data and the universal relations (1) clearly reveal
that phase fluctuations are essential and predominant close to the insulator-to-
-superconductor transition 1. For this reason the BCS and Eliashberg theories,
where the phase of the order parameter is unimportant for determining the value of
Tc , are not applicable. (3) The consistency with the bosonic insulator-to-superfluid
transition at end point 1 to preformed pairs in the underdoped regime and pairing
is then manifested in terms of a gap below TMF which is well confirmed by a vari-
ety of measurements. (4) As the doping level rises, the materials undergo a 2d- to
anisotropic 3d crossover. (5) The experimental evidence for metallic normal-state
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properties in the overdoped regime requires that T, and TMF approach one an-
other. For these reasons phase fluctuations are no longer predominant and the
BCS—Eliashberg mean-field theory might apply. In any case, close to the criti-
cal end point 2 the materials are anisotropic but 3d, which renders the relation
between T, and the zero temperature penetration depth nonuniversal.

I would like to thank many colleagues for discussions, particularly 0. Fischer,
Y. Jaccard, P. Martinoli, R. Micnas, M.H. Pedersen and J. Singer.
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