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The observed magnetic susceptibility Xobs(T) data of Ami et al. for the
linear-chain cuprate Sr2CuO3 are re-analyzed in terms of recent theory of
Eggert et al. for the spin susceptibility x(T) of the spin S 1/2 linear-chain
Heisenberg antiferromagnet, which yielded the Cu—Cu exchange constant
J/kB = 2150 K. Values for J', the exchange constant in the rungs, and J,
that in the legs, were estimated for the S = 1/2 two-leg ladder compound
SrCu2O3, using the x(T) data of Azuma et al. The analyses suggest that
J'/J = 0.5, contrary to the expectation that J'/J 1, and that J/kB is
very large (= 2000 K), similar to that in Sr2CuO3.

PACS numbers: 74.25.Ha, 74.72.Jt, 75.40.Cx

1. Introduction

Spin configurations formed by coupling n spin chains side-by-side in a plane
are termed n-leg spin ladders, where the coupling between spins is antiferromag-
netic (AF). Such spin ladders have received increasing attention over the last
several years (for an excellent review, see Ref. [1]). Experimental research on spin
ladders was stimulated by theoretical predictions that the (nonfrustrated) spin
S = l/2 two-leg ladder should have a nonmagnetic quantum "spin-liquid" ground
state, with a spin gap to the lowest magnetic triplet excited states, in contrast
to the isolated chain which has no spin gap. This prediction was verified for the
S = 1/2 two-leg ladder compounds (VO) 2P2O7 (Refs. [2-4]) and SrCu 2 O 3 [5]. For
wider ladders, the even-leg ladders are predicted to continue to show spin gaps with
a magnitude decreasing with n, whereas the odd-leg ladders display behavior sim-
ilar to that of the gapless isolated linear chain. The latter prediction was verified
for the three-leg ladder compound Sr2Cu3 O5 , which showed no spin gap [5] and
exhibited disordered static AF ordering below 50 K [6]. Also stimulating the ex-
periments on such materials were predictions that superconductivity might occur
by a purely electronic mechanism in weakly-coupled and weakly-doped even-leg
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ladders. For AF Heisenberg exchange interactions between nearest-neighbor (nn)
spins, the only case discussed here, the spin Hamiltonian of the n-leg spin ladder is

where J, J' > O for AF coupling. The first sum is over distinct bonds in each chain
(over legs of the ladder), and the second is over distinct bonds in adjacent chains
(over rungs of the ladder). The spin exchange coupling constant is J within a leg
and J' within a rung.

Herein, we first present an analysis of the observed magnetic susceptibility
vs. temperature xobs(T) data [7] for the prototypical S = l/2 linear-chain antifer-
romagnet Sr2CuO3 in terms of the recent theoretical predictions of Eggert et al.
for the spin susceptibility x(T) of the S = 1/2 linear chain nn Heisenberg anti-
ferromagnet [8]. We find that the exchange energy J between Cu 2+ spins is large,
J/kB 2150 K, where kB is Boltzmann's constant. A general method is then pre-
sented for estimating exchange constants in nonfrustrated S = 1/2 AF quantum
Heisenberg systems from the maximum spin susceptibility xmax value. From this
treatment and the experimentally extracted x(T) data [5], bounds are placed on
the inter- and intraladder exchange constants in SrCu2O3. We then review the
analysis [9] of the x(T) data [5] for SrCu2O3 in terms of the calculations of Barnes
and Riera [3], which assume isolated ladders. The assumption of isolated ladders
leads to the conclusion that J' < J/2 and that J is very large (J/kB > 2000 K), as
in Sr2CuO3. The influence of interladder coupling on x(T) is then discussed [9]. An
expression for x(T) incorporating the influence of interladder coupling is derived
and utilized to fit the data. for SrCu2O3. The inferred values of J'/J and J are
similar to the above values obtained by assuming negligible interladder coupling.

2. Magnetic susceptibility of Sr2CuO3

The powder xobs(T) data [7] for Sr2CuO3 are shown in Fig. 1. These data
were previously analyzed in terms of the Bonner—Fisher calculation [10] for x(T)
of the S = 1/2 linear chain Heisenberg antiferromagnet, which yielded the large
value J/kB = 2600±400 K [7]. A more accurate calculation of x(T), which is
significantly different than that of Bonner and Fisher at T < 0.2J/kB, has since
become available [8]. We therefore refitted the xobs data by Eggert the expression

where x0 is a temperature-independent orbital contribution, the second term is a
Curie—Weiss impurity/defect contribution, and x(T) is the calculation of Eggert
et al. [8]. The best fit of Eq. (2) to the data is shown as the heavy solid curve
in Fig. 1, where x0 = —7.5 x 10 -5 cm3/mol, C= = 4.0 x 10- 4 cm3K/mol, B; =
4.5 K, and J/kB = 2150±1ó0 K assuming [7] a Landé factor g = 2.1 for the
bulk spins. The value of J/kB is significantly larger than observed in the layered
cuprate superconductor parent compounds (^ 1500 K), but is similar to the value
(2200+200) K obtained from a recent identical analysis of xobs (T) data for a single
crystal [11], where however g = 2 was assumed (H. Eisaki, private communication).
Eggert fitted the data in Fig. 1 using the same theory [8] as used here and the same
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Fig. 1. Observed magnetic susceptibility Xobs vs. temperature data for the linear chain
compound Sr2CuO3 [7]. The solid curve through the data is a theoretical fit (see text).

expression (2), and obtained J/kB = 1700  K [12], where (S. Eggert, private
communication) g = 1.6 for Cue+ was used; this g-value seems unrealistically low,
since to our knowledge Cue+ always shows g > 2 in oxides. A value J/kB= 3000 K
was obtained from optical measurements on Sr2CuO3 [13]. Theoretical calculations
indicate that J/kB can be no larger than about 2300 K in this compound [14].

3. x(T) of S = 1/2 Heisenberg antiferromagnets

Every specific antiferromagnet has a characteristic x value associated with
it, namely the value Xmax = max[x(T)] E X(Tmax). Here, we consider the infor-
mation which can be gained about the AF exchange coupling constants between
the spins of a material from the measured Xmax value, assuming nn Heisenberg
exchange interactions only. The treatment is somewhat different from the one we
gave previously [9]. To motivate the form of the expression to be used to analyze
published calculations of x(T) (and Xmax) for various spin lattices, and also to
provide preliminaries needed for Sec. 4, we first review the Weiss molecular field
theory (MFT) for x(T). 

Suppose we have a magnetic system consisting of coupled subsystems, where
the spin susceptibility X0 (T) of an isolated subsystem is accurately known. In
MFT, the thermal average (• . •) of the magnetic moment μi of a given spin i in
the coupled system is (μi) = X'oHeff, where Heft is the effective magnetic induction
seen by the spin i, and xó is the susceptibility per spin of the isolated subsystem.
One writes Heir as Heff = H + Hex , where H is the applied magnetic field and
Hex is the (average) exchange field seen by lei due to exchange coupling with its
neighboring magnetic moments μj. In MFT, one assumes that

where a > 0 is the AF molecular field coupling constant. Combining the last three
expressions gives (μi) = x'o(H—λ(μ )). We assume that all spins are magnetically
equivalent, therefore in the paramagnetic state one has (μj) = (μi). Then, solving
for (μi) and using the definitions x' =(μi)/H,x= Nx" and X0 = NA where N
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is the number of spins in the system, one obtains

We now express λ in terms of the exchange coupling constants J*ij between
a spin in a given subsystem Si and spins Sj in adjacent subsystems. The spin

Hamiltonian for the coupled system is H = 7{o +'H*, where the first term is for
an isolated subsystem and the second is the interaction Hamiltonian between sub-
systems. The latter Hamiltonian is written H * = Σ(i j) Jij Si • Sj, where the sum
is over nn bonds and J*ij> 0 denotes an AF interaction. Using the definition µ =
—gµB S where µB is the Bohr magneton, one has H* = Σi µi • E, (J*ij g 2μB)µj .
Writing the average exchange energy EL between ii i and its intersubsystem neigh-
bors as Eex (μi)(μj) Σj(J /g2µ2) = —(μi)Hex, one has

If a subsystem consists of a single spin, then x0 (T) is the Curie-law sus-
ceptibility of isolated spins, x0(T) = C/T, where the Curie constant C is given
by C Ng 2μBS(S + 1)/3kB. Substituting this x0 into Eq. (7) then yields the
Curie—Weiss law, x(T) = C/(T + 0), where 0 = S(S + 1) Σ j Jij /3kB. If all of the
.J*ij are the same,= J,and the number of nearest neighbors is defined asz,then

and one obtains the familiar form 0 = S(S + 1)zJ/3kB.
By analogy with Eq. (8), in general when the exchange coupling constants

Jig of a given spin i to its neighbors j are not all the same, we define an effective
magnetic coordination number, zeff, by the relation zeffJmax= ΣjJij, or

where Jmax = max(Jij), i.e., Jmax is the largest exchange coupling constant in the
system.

Now for a system composed of interacting subsystems as discussed above,
one can write
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where the first sum on the right hand side is over nearest neighbors of spin i within
a subsystem and the second sum is over nearest neighbors of spin i between sub-
systems. We define the effective magnetic coordination number within a subsystem
as zo = Σj  Jij/Jmax Jmax and between subsystems as z* = Σj, Jij /Jmax. Then Eq. (9)
becomes

Upon multiplying both sides of Eq. (7) by Ng2μ2/ Jmax, and using Eqs. (9) and
(11), one obtains the simple forms

where again α = 1. Equations (13) and (14) were derived using MFT, and are
therefore only expected to be valid in the weak-coupling limit

In this limit, from Eq. (14) a plot of 1/x*max vs. zeff should give a straight line
with a slope of 1. Examination of published numerical calculations of x* (T) for a
number of S = 1/2 systems consisting of weakly-coupled subsystems shows that
this is indeed correct in each case as long as z* = zeff — z0 < 0.1. This analysis
will be published separately. Here, as will be seen below, we are interested in the
more strongly coupled regime in which the condition (15) is not satisfied. In this
case, we expect Eq. (14) to hold on average, but where the constant α is to be
empirically determined.

Shown in Fig. 2 is a plot of 1/x*max vs. zen. for a number of geometrically
nonfrustrated OD, D, 2D and 3D S = 1/2 lattices for which 1 < zeff < 8. Included
in Fig. 2 are x*max data for lattices with isotropic J (i.e., Jij = J), including
the dimer (z = 1), the square cluster (z = 2), the linear chain (z 2) [8], the
planar honeycomb lattice (z = 3) [15], the ordered-vacancy square lattice (z =
3) of CaV4O9 [16], the two-leg ladder (z = 3) [3], the square lattice (z = 4),
the two-layer square lattice (z = 5), the simple-cubic lattice (z = 6) and the
body-centered-cubic lattice (z = 8) [15]. For the n-leg ladders with n = 3, 4, 5 and
6 [17], zeff is defined to be the average coordination number of a spin in a ladder:
zeff = 4 — 2/n. In addition, lattices with anisotropic Jj are included in Fig. 2:
the alternating-exchange linear chain in which two different J=3 alternate along
the chain (zeff = 1.2-1.8) [3], the anisotropic two-leg ladder (zeff = 1.2-2.9) [3, 18],
and the anisotropic ordered-vacancy square lattic e of CaV4O9 (zeff = 2-2.75) [16].
On the global scale of the figure, all of the data can be fitted reasonably well by a
straight line, confirming Eq. (14):
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Fig. 2. Inverse of the maximum spin susceptibility xmax from calculations vs. the effec-
tive magnetic coordination number zen- for various S = 1/2 Heisenberg antiferromagnets
(see text). The straight line is a linear fit to all of the data.

Referring to Eq. (14), the slope is α = 1.93. The above MFT predicts that
Tmax = 0, yielding α = 2, which is close to the value derived from Fig. 2. In-
serting the definition of x* in Eq. (12) into Eq. (16), and using N = Avogadro's
number and g = 2.1, typical of the average g value of Cue+ spins-1/2 in oxides,
one obtains

Thus, from the measured xmax value, one can obtain an estimate of the possible
range of exchange coupling constants in a compound.

4. Analysis of x(T) of SrCu2O3
4.1. Determination of exchange constants from X xmax value

To illustrate the use of Eq. (17), we apply it to the case of the S = 1/2 two-leg
ladder compound SrCu2O3. Representative x(T) data [5] for this compound are
shown in Fig. 3. It appears that xmax is given to within a few percent by xmax =

1.0x 10-4 cm3/mol Cu (confirmed below). Then Eq. (17) yields the following
quantitative insights. First suppose that interladder spin exchange coupling is
negligible. If the exchange coupling within the ladder is spatially isotropic, then
z = 3 (= zen), leading to J/kB = 2000 K. If the intrachain interaction J = 0,
corresponding to isolated dimers, then z = 1 and the rung exchange constant
J'/kB = 3600 K. On the other hand, if J' = 0, corresponding to isolated chains
with z = 2, then the intrachain J/kB = 2500 K. If J'/J = 1/2, then Jmax = J
and zen = 2.5, so that Eq. (17) yields J/kB = 2200 K and J'/kB = 1100 K.

Now suppose that interladder spin exchange coupling is not negligible. For
example, suppose that zen = 5 (implying a strong interladder spin exchange cou-
pling) in SrCu2O3, which would correspond, e.g., to an isotropic two-leg ladder
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Fig. 3. Representative magnetic spin susceptibility x vs. temperature data for SrCu2 O3

(filled circles) [5]. The open symbols and connecting lines are fits to these data by
calculations for the isolated S = 1/2 two-leg ladder [3], for several ratios of the rung to
leg exchange constants J'/J and for the fitted values of J [9].

with intraladder exchange constant J and where each Cu spin in a ladder is cou-
pled to a Cu spin in each of two adjacent ladders with the same exchange constant
J. Then one obtains J/kB = 1400 K.

Thus, we conclude that a lower limit on Jmax/kB in SrCu2O3 is 1400 K. To
proceed further and determine which of the above or other possibilities actually
applies requires fits to the X(T) data by specific models, which we now attempt.

4.2. Analysis assuming isolated ladders

Numerical calculations of X(T) for isolated S = 1/2 two-leg Heisenberg lad-
ders exist for J'/J values down to 0.5 [3]. The theoretical X(T) predictions for
J'/J < 1 by Barnes and Riera [3] were therefore scaled onto the X(T) data [5] for
SrCu2O3 in Fig. 3. For each value of J'/J, J was varied until agreement with at
least the highest T experimental data was obtained, as shown in Fig. 3. Values of
J'/J> 0.9 are clearly ruled out, with the lowest value J'/J= 0.5 providing the
best (but still not optimum) fit. The evolution of the fits with decreasing J'/J
indicates that J'/J < 0.5 and J/kB > 2000 K.

4.3. Analysis assuming coupled ladders

Here, we utilize Eqs. (12) and (13), and set α to the MFT value of 2. For
Xo(T), the calculations of Barnes and Riera [3] for J'/J = 1, 0.7 and 0.5 are
utilized. The fits by Eq. (13) to the experimental X(T) data [5] in Fig. 3 for
SrCu2O3 are shown in Fig. 4. An essentially perfect fit to the high-T (> 300 K)
data was obtained for each of the three ratios of J'/J. For J'/J = 1 (z0 = 3),
the best fit gave z* E zeff — z0 = 3.0(3) and J/kB = 1120(30) K. The value of
z* (and consequently J'/J and J) is not acceptable, since it corresponds to each
Cu spin in the sample having the same unfrustrated coupling to each of zeff = 6
nearest neighbors, equivalent to a simple cubic spin lattice. Such a system would
not exhibit the strong short-range AF ordering over such a large temperature range
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Fig. 4. x vs. temperature for SrCu2O 3 [5], as in Fig. 3. Theoretical fits to the data
assuming interladder coupling are shown by open symbols and connecting lines [9].

below Tmax as observed, but rather would exhibit long-range AF order at TN
J/kB [15]. For J'IJ = 0.7 (z0 = 2.7), the values z* = 1.65 and J/kB = 1430 K
were obtained. Finally, for J'/J = 0.5 (z0 = 2.5), the parameters are 'z* = 1.0(2)
and J/kB = 1900(200) K. Since SrCu2O3 exhibits a spin-liquid ground state as
discussed in Sec. 1, the z* value for J'/J = 0.7 seems too large to be realistic.
Thus, we tentatively come to similar conclusions reached above, that J'/J= 0.5
and J/kB= 2000 K in SrCu2O3.

5. Concluding remarks

The analysis in Sec. 4 of x(T) for SrCu2O3 assuming isolated ladders suggests
that J'/J < 0.5 in this two-leg spin ladder compound. The AF coupling along the
legs of the ladders is found to be very strong, J/kB > 2000 K, similar to our
and others' estimates for the S = 1/2 linear chain compound Sr2CuO3, J/kB=
2200 K. The inferred J'/J and J values are consistent with the general discussion of
.max in Sec. 3; the results of this section may be generally useful in analyzing x(T)
data for other spin systems. From Sec. 4, the above parameters for SrCu2 O3 appear
to be supported even after inclusion of interladder coupling in the mean-field type
fits to the x(T) data. Further theoretical work is needed to improve the accuracy
of the derived parameters.
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