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Mesoscopic phenomena in quantum structures which incorporate mag-
netic impurities with localized spins may exhibit a number of novel features
driven by spin-disorder scattering, exchange spin-splitting of electron bands,
and the formation of bound magnetic polarons. After brief information on
these effects, their influence on universal conductance fluctuations as well
as on low frequency noise and quantum localization is presented. Millikelvin
investigations of diffusive charge transport, which have been carried out for
submicron wires of n+-Cdi_ xMnx Te epilayers, are reviewed in some details.
These studies have provided information on the significance of spin-disorder
scattering in semiconductors and put into the evidence a new driving mech-
anism of the magnetoconductance fluctuations — the redistribution of the
electrons between energy levels of the system, induced by the giant s-d ex-
change spin-splitting. Important implications of these findings for previous
interpretations of spin effects in semiconductor and metal nanostructures are
discussed.

PACS numbers: 72.15.Rn, 73.20.Fz, 73.61.Ga, 75.50.Pp

1. Introduction

A considerable interest in transport properties of nanostructures containing
localized spins was initially stimulated by theoretical predictions implying an un-
usual sensitivity of the conductance to the disorder distribution in a given meso-
scopic sample [1]. This sensitivity to the potential realization results from the
important role played in the diffusion by quantum interference of the de Broglie
waves. It has been suggested [1] that even a single spin-flip of a localized spin might
affect the conductance of the itinerant electrons. This would offer a powerful tool
to probe dynamics of slow processes specific, in particular, to the spin-glass phase.

In this paper, we discuss selected theoretical developments and experimen-
tal findings concerning the influence of magnetic impurities with localized spins
upon quantum transport phenomena in metals and doped semiconductors. These
two groups of conductors form, in a sense, complementary systems. In particular,
characteristic electronic lengths are typically shorter in metals than in semicon-
ductors. By contrast, the range of magnetic inter-ion interactions are longer in
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metals than in semiconductors. Accordingly, in the case of semiconductors the
subsystem of magnetic ions is more robust to the Kondo effect, spin-glass freez-
ing, and the nanostructurization procedure. Another important aspect of diluted
magnetic semiconductors is that the incorporation of magnetic impurities can be
controlled during the growth process, while the details of the electronic structure,
together with the value of the exchange coupling between the d and s electrons,
are known precisely from quantitative studies of magnetooptic effects. The effec-
tive mass electrons in semiconductors are, however, often close to the localization
boundary, unless a special doping procedure results in the reduction of strong
electron scattering by ionized impurities.

2. Universal conductance fluctuations, quantum noise, and quantum
localization

A convenient approach to the quantum effects is offered by the Landauer--
Bűttiker formalism [2], according to which the process of electron transport can be
viewed as a scattering problem of fluxes of the Fermi-level electrons entering and
leaving the medium through ideal leads. Within this formalism the conductance
can be expressed by eigenvalues of the familiar quantum-mechanical transmission
and reflection matrices for the corresponding electron fluxes. These matrices con-
tain information on the potential distribution in a given sample and are subject
to symmetry constraints imposed, for instance, by spin degeneracy occurring if
no spin-dependent perturbations are present. Without too much simplification, all
novel quantum phenomena in question are caused by two effects, which to a large
extent determine the spectrum of the eigenvalues. The first is quantum interfer-
ence of transition amplitudes corresponding to different electron paths through
the medium. The second is a certain spectral rigidity of the eigenvalues, which
can be traced back to the celebrated Mott observation that in disordered sys-
tems states close in energy are far apart in a real space. Similarly to the case of
a picture produced by interference of light, a change of the conductance occurs
over a scale corresponding to the length of the interfering waves. Such an effect
was observed as irregular but reproducible conductance fluctuations as a function
of the gate voltage, i.e., the de Broglie wavelength of the electrons at the Fermi
level [3, 4]. Since the magnetic field (vector potential) affects also the phase of the
wave function, similar aperiodic fluctuations occur as a function of the magnetic
field [3, 4], the correlation field corresponding to one flux through the sample sur-
face S, Bc=h/eS. Of course, in multiconnected geometries, a substantial number
of electron trajectories encompasses the same magnetic flux, and the fluctuations
acquire a periodic component, an expectation confirmed in a series of beautiful
experiments with rings [3, 4]. An interesting aspect of the conductance fluctua-
tions is the universality of their magnitude, closely related to the spectral rigidity
mentioned above. According to diagrammatic calculations [5, 6] and confirmed by
numerical simulations [6, 7], the root mean square (rms) value of the fluctuation
amplitude is given by rms(δG)= 0.5e 2/h in the case of the two-terminal conduc-
tance G of any metallic sample at zero temperature.

Since the conductance contains information on the actual impurity distribu-
tion in a given sample, a question arises as to how much d changes on average
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upon displacing a single scattering center, say, by δR [8, 1]. The ratio of rms(G 1 )
to rms(δG) given above is evaluated to be for d = 3 (cf. [8, 1])

where C(x —> 0) = x 2 /12 and C(x — oo) = 1; ι = τνF is the electron mean-free
path while wimp = 1/nimpτimpvF is the cross-section of the relevant impurity,
which in the case of, for example, neutral centers in semiconductors is _substan-
tially smaller than that corresponding to the unitary limit, σi mp 1/kF 1 . (In
the case of d = 2 there is no L in the denominator of Eq. (1).) The above result
means that the mean response of the conductance to an uncorrelated displacement
of a fraction p of all impurities in the sample, rms(δG p ) = (pLdnimp)1/2rms(δGl ),
grows with the system size L (this will continue until rms(δGp ) reaches the satura-
tion value rms(δG)). A strong sensitivity of G on the movement of impurities has
led to the suggestion that the quantum effects in question are responsible for 1/f
noise [8, 9], a conjecture corroborated by its sensitivity to the magnetic field [8, 9].
Clearly, the incoherent processes mentioned above (atom diffusion, but also 8pin
fluctuations or vertex motion, etc.) operate only at nonzero temperature, at which
one should also take into consideration temporal fluctuations of the potential,
caused by phonons and/or other electrons. With the increasing temperature, the
amplitude of such fluctuations grows, and so does rms(δGp(L)), reaching finally
its saturation value rms(δG). The size of the sample is then equal to the so-called
phase-breaking length 4. At still higher temperatures the sample can be consid-
ered as consisting of [L/Lφ0(T)]d uncorrelated "coherence boxes". In this regime,
the classical self-averaging property of G is recovered as the sensitivity of G to,
say, a magnetic field decreases with L and increases with LφT. In addition toLφ(T),
there exists a one more relevant length scale at nonzero temperatures, which is
associated with an average of the interference effects by thermal spread of the de
Broglie wavelengths ∆λ of electrons contributing to G. This spread is of signifi-
cance once ∆λ/λ2 becomes greater than the inverse of a mean length of electron
path through the sample, i.e. if L > LT = √hD/kBT. Explicit expressions de-
scribing the decay of the universal conductance fluctuations (UCF) and quantum
noise with L for L > L LT can be found in [3, 8, 5-6]. In semiconductors, below
4K, usually Lφ>LT>l

The above discussion might suggest that the quantum effects are only impor-
tant in mesoscopic samples Lφ , LT > L > f, while they become totally insignifi-
cant at L » Lφ , LT. Actually there are two quantum phenomena which survive
the averaging procedure and contribute to the conductance of disordered macro-
scopic samples. Interestingly enough, they are thought to drive Anderson—Mott
localization in disordered conductors [10]. The first is quantum interference cor-
responding to the clockwise and counterclockwise electron trajectories along the
same self-intersecting electron paths. Since such interference is constructive, it in-
creases the probability of return to the starting point, and thus diminishes the
conductivity. The second effect stems from the earlier mentioned disorder-induced
correlation between electron energies and their position in real space. Such an
additional correlation introduces modifications to the standard Landau theory of
Fermi liquids — the effects of the electron—electron interaction8 cannot be longer
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taken into account by a qualitatively unimportant renormalization of the effective
mass. These two quantum effects turn out to be controlled by diffusion poles in
the particle—particle and particle—hole correlation functions of the Fermi liquid in
the random potential.

3. Influence of magnetic impurities upon quantum transport

Soon after the discovery that the Anderson—Mott localization in disordered
metals and the universal conductance fluctuations in mesoscopic conductors are
controlled by interference phenomena, i.e., diffusion poles in particle—particle and
particle—hole correlation functions, it has become clear [5, 1, 11-12] that the ex-
change coupling between the carriers and the subsystem of magnetic impurities,
—JsS, would play an important role in the physics of quantum transport. Indeed,
it is well established by now that the localized spins, apart from introducing an
additional temperature and magnetic-field dependent contribution to the momen-
tum relaxation rate, 1/τs(T, H), can affect quantum transport phenomena in many
other ways, depending on their dynamics, ordering, and relevant degrees of free-
dom. We discuss separately effects of spin-disorder scattering, spin-splitting, and
magnetic polarons.

3.1. Spin-disorder scattering

In a spin-glass phase, the perturbing potential associated with the frozen
spins leads to the violation of the Onsager—Bűttiker symmetry relations in meso-
scopic samples [13-15] as well as it alters the scaling factor of the UCF ampli-
tude [5, 7]. The fluctuating spins, in turn, because of an extreme sensitivity of the
conductance to potential realizations, are expected to be an efficient source of the
conductance noise [7-8,l,16]. If, therefore, the integration time of the resistance
meter is longer than the correlation time of the spin fluctuations and s is shorter
than characteristic times of competing phase breaking mechanisms, the exchange
interaction results in dumping of the UCF amplitude [17-19]. Besides, electron
scattering by disordered Ising spins gives rise to a cutoff in the particle—particle
channels with jz = O and the particle—hole channels with j, = ±1, whereas the
coupling to Heisenberg spins introduces a cutoff 1/-τ, to all diffusion poles except
for the particle—hole channel with total spin j = O. This affects the quantum correc-
tions to the conductivity, and alters the universality class of the metal-to-insulator
transition (MIT) [10].

Quantitatively, in the presence of a magnetic field, the relevant longitudinal
and transverse spin relaxation rate of electron liquid with a three-dimensional (3D)
density of states assumes a well-known form [20]

where α is the s—d exchange integral; x|| (T, H) = 8M(T, H)/8H and xj. (T, H) =
M(T, H)/H. Here M(T, H) is the magnetization of the Mn spins, which is usually
well parameterized by a modified Brillouin function, M(T, H) = i Nog μBSBs (T+
To , H), where xN0 and T + T0 are an effective concentration and temperature of
the localized spins, respectively.
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In the vicinity of the MIT, the spin—spin correlation function of the electron
liquid becomes significantly renormalized by disorder and electron—electron inter-
actions [21]. In particular, the apparent spin relaxation rate T2 , as measured by
linewidth of electron spin-resonance (ESR) or spin-flip Raman scattering (SFRS),
is given by [22]

where ι  is the mean free path and F is an amplitude of the Coulomb interaction [10].

3.2. Spin-splitting

The s—d coupling results in the spin-splitting of the electron states that
depends on the temperature and the magnetic field according to [20]

As shown in Fig. 1 for electrons in Cd0.95Mn0.05Se : In [22], the spin-splitting energy
can indeed be large at sufficiently low temperature, corresponding to the effective
Land factor in the excess of 500.

Fig. 1. Temperature dependence of the Stokes energy shift versus applied magnetic field
obtained using spin-flip Raman scattering from itinerant electrons in n+-Cd0.95Mn0.05Se
in the vicinity of the metal-to-insulator transition. The open circles are for forward
scattering, the solid circle — for back scattering. The solid lines show fits to Eq. (4),
the dotted lines take into account a field independent bound magnetic polaron energy
(after [22]).

Such spin—splitting alters the universality class of the MIT [10] and the
scaling factor of the UCF amplitude [5] as it introduces a cutoff in the particle—hole
channels with jz = ±l and particle—particle channels with jz = 0 [10, 23-24].
This leads also to a giant positive magnetoresistance in the neighborhood of the
MIT [23,25]. At the same time, the spin-splitting leads to a redistribution of the
carriers between the spin subbands. It was so far noted that the redistribution
may affect the conductivity in two ways. First, by its influence on the mean free
path that appears for hωs > εF [26]. Second, by changing the distance of εF to
the mobility edge em [27], an effect operating if hωs > |F — em | .
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Experimental results [28], which are discussed below, show that in mesoscopic
systems the redistribution of the carriers between the nanostructure energy levels
constitutes a new driving mechanisms of UCF in the magnetic field.This is because
the redistribution and the corresponding shift of the Fermi energy er with respect
to the bottom of the spin-down and spin-up subbands, result in a gradual change of
energy levels of the system, which contribute to the conductance. The effect begins
to show up at rather small values of the spin-splitting, hω s > max(kBT, h/T2).

In order to evaluate the correlation field Hd -1 of those magnetoconductance
fluctuations that are induced by the spin-splitting, Hspin , we observe that as long
as F » hωs, an increase in the magnetic field by ∆H leads to a shift of the
Fermi energy ∆εF = f Ź ΔHBhωs/8H. Hence, for hωs > μc , where [5] µc

max(kBT, h/τφ) is the energy correlation range, we obtain Hcspin in the form

where the factor 1/√2 appears because the fluctuations result from a superposition
of two independent contributions associated with two different spin subbands. It
can be presumed that in magnetic materials phase breaking time 'τ" = h/µ, is
equivalent to the spin-relaxation time T2 of itinerant electrons. Since the correla-
tion field for the orbital effects [5, 3]

where Lmin = min(Lφ , L(0) and L(x) L(y) is the sample area projected perpendic-
ular to H, we see that the spin effect will dominate for sufficiently large values
of the magnetic susceptibility x (T, H) = ∂M(T, H)/∂H and the inverse diffusion
constant D -1 = 3m*/(hkFl).

3.3. Bound magnetic polarons

There is a growing amount of evidences in favor of a phenomenological
two-fluid model of electronic states in the vicinity of the MIT [29, 23, 22, 30]. Ac-
cording to that model the conversion of itinerant electrons into local moments
occurs gradually, and begins already on the metal side of the MIT, leading to the
coexistence of the extended and strongly localized states. In magnetic materials,
the local moments can polarized, via s—d interaction, the neighboring Mn spins
(there are about 100 Mn ions within the Bohr orbit in n-Cd0.99Mn0.01Te). The
ferromagnetic bubbles (bound magnetic polarons) formed in this way constitute
centers of spin-dependent scattering for itinerant electrons. The efficiency of this
scattering increases rather steeply with decreasing temperature, as the degree of
the bubble polarization is proportional to the magnetic susceptibility of Mn spins,
x(T) [20, 23].

4. Experimental results for submicron wires of Cd1_xMnxTe epilayers

CdxMn1_xTe:In films with x = O or x = 1 ± 0.1%, a typical thickness
of 0.3 µm, and electron concentrations around 10 18 cm-3 were grown by MBE
onto (001) oriented SI GaAs epiready substrates with 10 A ZnTe and 3 μm CdTe
undoped buffer layers [31, 28]. The electron concentration in the studied samples
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is by a factor of five greater than that corresponding to the MIT. The carrier and
Mn concentrations are low enough to preclude an appearance of either spin-glass
freezing or the Kondo effect, even at the lowest temperature of interest here, T =
30 mK [32].

The studied wires had the form of six-terminal Hall bars with a square
cross-section S of a side W = 0.3 ± 0.05 μm, and the distance between the
voltage probes being 4-5 μm, as shown in the inset to Fig. 2. They were fab-
ricated by means of 30 keV electron-beam lithography, followed by wet etching.
Low-frequency a.c. currents down to 100 pA were employed for the resistance mea-
surements in a dilution refrigerator, carefully protected against electromagnetic
noise.

Fig. 2. Two measurements of the resistance as a function of the magnetic field for the
wire of n+-Cd0.99Mn0.01Te at 30 mK. The inset shows a scanning electron micrograph
of the sample (after [28]).

Figures 2 and 3 present resistance as a function of the magnetic field perpen-
dicular to wires of CdTe : In and Cd0.00Mn0.01Te : In with the electron concentra-
tion 1.0 x 10 18 and 8 x 1017 cm-3 , respectively [28]. Weak-field magnetoresistance
and irregular reproducible resistance fluctuations are detected in both materials.
Starting from the magnetoresistance we note that because down to 100 mK, W
is greater than the thermal diffusion length LT = √hD/kBT, the studied wires
are three dimensional (3D) in respect to phenomena that are sensitive to thermal
broadening of the distribution function, such as electron—electron interactions.
Since, however, in nonmagnetic wires Lφ, = √DTφ > LT[23], we may expect
a dimensional crossover in the negative magnetoresistance as it is controlled by
phase breaking effects. This dimensional crossover is shown in Fig. 3a, which dis-
plays the temperature dependence of the magnetoresistance ∆p in n+-CdTe. The
theoretical curves were calculated for the 3D case from the weak-localization the-
ory [10], taking m*/m0 = 0.099 and assuming Lφ = A/T3/ 4 , where A was a fitting
parameter determined to be 0.9 μm K3/4 . Since in 3D ∆p oc H -1 / 2 , while in D
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Fig. 3. Resistance changes as a function of the magnetic field for the wires of
n+-Cdi_xMnxTe with x = 0 (a) and x = 1% (b) at various temperatures between
30 mK and 4.2 K (traces for the lowest temperatures are shifted upwards). Dashed
lines represent magnetoresistance calculated in the framework of 3D weak-localization
theory [10, 23]. Dotted lines are guides for the eye, and visualize a strong temperature
dependence of the resistance features in Cd0,99Mn0.01Te (b) (after [28]).

∆p oc H-1, the discrepanciesbetween the experimental and calculated p, ap-
pearing at Lφ(T) > W, seem to indicate the presence of the temperature induced
crossover from 3D to 1D at about 3 K in the studied wire.

A striking influence of the magnetic impurities upon the magnetoresistance
and UCF is shown in Fig. 3b, where data for n+ — Cd0.99Mn0.01Te are shown
together with the results of a theoretical computation [10, 23]. As demonstrated
previously [23], the positive magnetoresistance is caused by the effect of the gi-
ant exchange spin-splitting upon the electron—electron interaction. By taking the
well-known material parameters of Cd1_xMnxTe [20,33] αN0 = 0.22 eV, N o =
1.48 x 10 22 cm-3 , g = 2.0, S = 5/2 and, for x = 1%, T0 80 mK [32,33] one
obtains hωs(T, H) that gives gμBH = 5.5 meV for SgμBH » kB(T + To) and

= 150 K/(T + To) in the opposite limit. In that way, the Coulomb amplitude
was the only adjustable parameter and its fitting yielded g3 g4 = 1.3 [28]. As
expected, no dimensional crossover to 1D is observed in the positive magnetore-
sistance as it is controlled by a short length scale, LT.

Turning to the resistance fluctuations in the studied samples we note that
their root mean square amplitude is independent of the magnetic field. On the
other hand, it increases with decreasing temperature according to rms(∆R)/R2

(C/T)re 2/h where, above 100 mK, C = 0.1 mK and τ = 0.5. While such a
behavior is typical for nonmagnetic 1D wires, in which the distance between the
voltage probes is greater than both LT and Lφ [5, 3], it came as a surprise in the
case of Cd0,99Mn0,01Te. Indeed, in the latter rms(∆R) is expected to be controlled
by τs which for T > To is independent of temperature but increases with the
magnetic field [17-19]. However, because of the low density of states specific to
semiconductors, one obtains h /(kBτs) = α2m*kFxNoS(S + 1)/(4πh2 kB) to be
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as low as 100 mK at H = 0. This estimate explains the minor importance of
spin-disorder scattering in the studied system.

Another important aspect of the data depicted in Fig. 3b concerns an unusual
behavior of the correlation field Hc of the resistance fluctuations in Cd0.99Mn0.01Te.
As shown by dotted lines, the fields Hi corresponding to characteristic points of
the fluctuation pattern tend to increase with either temperature or the magnetic
field, a behavior not observed in nonmagnetic wires, including those of n+-CdTe.
This new effect is visible not only for the perpendicular but also for the parallel
orientation of the magnetic field with respect to the wires.

We note that the field-induced changes of spin configurations have been pro-
posed as the mechanism driving magnetoconductance fluctuations in spin-glass
Cu : Mn wires [15]. However, it has recently been demonstrated [28] that the dom-
inant mechanism has its origin in the spin-splitting-induced redistribution of the
carriers between the spin subbands, an effect that can also operate in the paramag-
netic phase considered here, as discussed in the previous section. Since, according
to Eq. (4), the spin-splitting is proportional to the magnetization, the positions
of the characteristic points of the fluctuation pattern should be temperature in-
dependent if the resistance would be plotted as a function of the magnetization
M, not of the magnetic field H. That this is indeed the case is shown in Fig. 4.
Moreover, by putting parameters suitable for the CdMnTe wire (kFl = 1.5 and
F = 2), HCspin = 410 T [K] Oe can be obtained from Eqs. (5) and (6). Except for
the lowest temperatures, where the effect of bound magnetic polaron may appear
[23, 22], this agrees with the experimental values, HexP = 360 T [K] + 36 Oe,
determined in the range 0.03 K< :r < 0.8 K and O < H < kB(T +To )/(gμB).

Fig. 4. Magnetoresistance data of Fig. 3b plotted as a function of magnetization in the
units of M, = gµBSN0x (after [28]).
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5. Discussion and conclusions

The experimental results presented above reemphasize a relatively small im-
portance of spin-disorder scattering hi semiconductors. This, in particular, put
into a question a suggestion [19] that spin-disorder scattering by etching=induced
defects can account for the absence of the resistance fluctuations in the region of
weak magnetic fields in n+-GaAs wires at T > 1.3 K.

The data for CdMnTe demonstrate unambiguously the significant influence
of the spin-splitting-induced redistribution of the carriers between the spin sub-
bands upon transport phenomena of mesoscopic systems. It is interesting to find
out whether the spin-splitting effect in question could account for the finite value of

Hspin observed in Cu : Mn [15]. By taking parameters suitable for 1000-atomic-ppm
Cu : Mn [15], i.e., l=  200 A, L^ = 0.35 μm, m* = m0, X = xc(Tg) =
3.8 x 10-4 emu, and |αNo| = 0.5 eV, one obtains [28] Hein = 4.1 kOe from Eqs. (5)
and (6), a value quite close to the experimental finding, Hein = 4.2=6.4 kOe [15].

Finally, we note that further experimental effort is needed to confirm the
assignment of the increase in noise [16] and the breakdown of the Onsager—Bűttiker
relations [14, 15] in Cu : Mn to the spin-glass freezing.

This work was supported by the Committee for Scientific Research, grant
No. 2PO3B 064 11.
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