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SPIN DENSITY IN REAL AND MOMENTUM SPACE
IN MULTI-ATOM ALLOYS BY KKR-CPA METHOD
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The application of the spin-polarized version of multiple scattering the-
ory for obtaining electron charge and spin densities in both real and momen-
tum spaces of concentrated, multi-atom disordered alloys is presented. This
method is based on the Korringa—Kohn—Rostoker (KKR) band structure ap-
proach and coherent potential approximation (CPA) method. The effective
one-electron potential is constructed within local spin density approxima-
tion. The magnetic neutron form factors are in real space of our main inter-
est. With the recent developments of new synchrotron photon sources, the
Compton profile becomes the most interesting target in momentum space. In
the most of examples, spin momentum density and its specific structure due 	
to Fermi surface will be shown. To get accurate enough description in mo-
mentum space and quantity like Compton profile, the determination of the
Fermi surface must be done with high precision. In this context we show how
to apply generalized Lloyd formula for accurate determination of the Fermi
level. Also we show how to use efficiently complex energy integration method
for the computation of matrix elements, G(τ, τ) or G(p, p), of the KKR—CPA
Green . function. Results for the iron—silicon ferromagnetic binary alloys and
half-metallic ferromagnetic Heusler alloys are presented.

PACS numbers: 71.15.Cr, 71.18.+y, 78.90.+t

1. Introduction

The aim of this article is to show how using the KKR-CPA theory we may get
electron spin density both in real (or, configuration) and momentum space. We will
refer to them frequently also as electron spin density and spin momentum density,
respectively. This approach was already proved very successful in study of many
physical properties such as band spectroscopy, phase stabilities, transport and
variety of magnetic related issues. The most spectacular application of KKR-CPA
formalism is a first-principles theory of ferromagnetic phase transitions in metals
by Gyorffy et al. [1]. For a set of review articles with the references cited, the
interested reader may look in Ref. [2]. As such calculations are in fact based on
the first-principles concepts and does not involve any adjustable parameters, they
become very attractive. To make them feasible and applicable for real system, we
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. use extensively the advantages offered by analycity of the Green function (GF)
(referred frequently as Herglotz properties) proved in KKR—CPA theory [3]. The
analycity of GF is a very crucial point, and in fact keeping the full form of GF
both in real and momentum spaces becomes very critical, as dropping off any
part of GF may introduce spurious singularities on complex energy plane. This
will immediately prevent the applying of the complex energy contour integration
technique. The way the self-consistent procedure is implemented in our KKR—CPA
computer code is similar to that of Moruzzi et al. [4] developed for transition
metal only. In the first step, when preparing the input data, we assume that we
have already the atomic electronic charges, or effective potentials in the form
appropriate for the random muffin-tin model. In the second step, we build up
the GF in the real space. Then we carry out integration on energy axis up to the
Fermi energy EF, in order to find electron densities. This integration is done on the
complex energy contour with end point EF, found earlier from generalized Lloyd

 formula [5]. The self-consistency procedure is set up within the framework of the
density functional theory using local spin density (LSD) approximation. In the
last stage of computation when all electron spin densities become converged and
stable the relevant physical quantities are computed. As most of them are done
with the standard method, we will pay only a special attention to problems, which
are not so obvious such as treating accurately breaks in 3d-momentum space due
to Fermi surface and its identification in the structure of Compton profiles.

2. General formulation

The presentation in this section is intended to delineate the connection be-
tween momentum density and the ground-state energy. The essence of such ap-
proach is based on the method proposed by Lam and Platzman [6]. The method
uses density functional techniques of Hohenberg—Kohn (HK) of the inhomoge-
neous electron gas. Generally, we are looking for the ground state solution of the

Schrödinger equation of the solid with the Hamiltonian H including all the many
particle interactions (h= e 2 /2 = 2m 1):

In Eq. (2.1) T is the operator of the electron kinetic energy, U, is the Coulomb
interaction between electrons, and Ue_n is the Coulomb interaction between elec-
trons and the atomic nucleus. These operators in (2.1) are written in terms of
conjugate second-quantized field operators Ψ (s, r) and Ψ+(s, r). We assume that
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nucleus with the atomic order number Zn is frozen in the position indicated by
vector lin . The electron spin density matrix for such system in the ground state
10) is then defined as

It is convenient to write p(r) defined in (2.3) also in the following form:

where n(r) is the charge density function, m(r) is the spin density vector function
and o = (a oz ) are the Pauli matrices. The one of the consequences of the
Hohenberg—Kohn theorem is that ground-state energy E of H in Eq. (2.1) is
functional of the form

with contribution Exc[p] which comes from exchange and correlation effects. Follow-
ing the observation by Lam and Platzman, spin density matrix can be found alter-
natively by the approach based on Feynman's theorem. If E(\) is the ground-state
energy of H(.\) of the form

With another consequence of the HK-theorem that E is stationary with respect
to pss' (r) we get the Kohn—Sham set of differential equations for the members of
the orthonormal set of functions {q_}. If writing the spin density matrix as series

If looking for the spin momentum density matrix, we may proceed  similarly,
recalling the second quantized field operators now as
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Then instead of Ea. (2.6) we put

Then by differentiating with respect to a we get

which is the spin momentum density matrix. Putting p(p) in the equivalent form
as in (2.4) we get

with electron momentum density n(p) and spin momentum density rn(p). But
now with the spin momentum density matrix, unlikely to the series expansion
of the spin density matrix given in Eq. (2.8), the similar expansion will be only
approximate. Generally. we may put this series as

where ∆pp s (p)means the correction functional which is formally proved [7] to be
done as

Its explicit form is a formidable task of the inhomogeneous spin-polarized fermion
gas, and stands as central problem of fermiology.

3. The spin-dependent KKR—CPA formalism
for multicomponent alloys

We consider a multicomponent alloy with basis atoms in positions ak
(k = 1 , ... , kb) from which the k-sublattices are generated by applying trans-
lational symmetry vectors R„ (n = 1, ... , N) of Bravais lattice. We assume that
sublattices sites can be occupied randomly by atoms Xk = (Ak, or Bk) with con-
centration c(Ak), and c(Bk) = 1 — c(Ak ), respectively. For the special case, if
c(Ak) = 1.0 we may think that k-sublattices are perfectly ordered like in crystal.
The model of the effective one-electron potential we use is of the muffin-tin form,
i.e., spherical inside of the non-overlapping spheres and constant outside spheres.
This model proved to be very fruitful for describing electronic structure of bi-
nary alloys. In the following we focus our discussion on the matrix elements of the
effective Green function calculated in Korringa—Kohn—Rostoker formalism with
coherent-potential approximation. The relevant expression for the GF elements of
the systems of atoms as described above is [3]
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In Eq. (3.1), τ' > τ, if r' < τ then J(Xk) and Z(Xk) should be transposed.
Z;Lk ) (sr) and J(Lk) (sr) are the regular and irregular solutions, respectively, of
the Schrödinger wave equation with the spin-dependent potential of the Xk-atom

The wave functions Zalk)(sr) and J^Xk) (sr) are normalized outside the muffin-tin
sphere (i.e. if τ > Sk) in the following way:

Here YL(r) is a real spherical harmonic, L E (l, m) are angular and magnetic
quantum numbers. The quantum spin index σ = (+,—) and spin variable s =
(+,—) allow to treat the lattice with magnetic moments. In Eqs. (3.3a) the spin
part of the wave function is xσ (s) = 60. 3 and h+(x) = ji(x)+ini(x) is spherical
Henkel function resulting from combination of j/ (x) spherical Bessel functions and
nl(x) spherical Neumann functions. The matrix τ (Xk)(E) is build up from the
energy-shell elements of the t-matrix of the Xk-atom on the k-site (Xk Ak,
or Bk). The elements of the matrix τ (Xk)(E) are related to the corresponding
phase shift, rek ) (E), in case of spherical symmetry given by the equation

The expression for GF in Eq. (3.1) is valid for any set of the scattering atoms.
If specializing to the case where Rn-site vectors form Bravais lattice, we assume
that in each Wigner—Seitz (WS) cell the configuration is one of the form {X} =
{X1 = (A1 , B1 ), ... , Xk b = (Ak b , Bk b )} with the probability P{X} resulting from
a product of concentration

In the spirit of CPA approximation, we put on each WS-cell the same set of effective
scatterers. If we denote effective scatterer t-matrix for k-sublattice as r (E) , and
by the tensor product matrix τ CP

then we may find on-energy shell t-matrix of the whole system from the sum over
k-points in the first Brillouin zone (BZ)
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known as KKR-complex crystal structure functions [8], which are defined via mul-
tipole distribution of the free electron GF

To find τcp(E) matrices in Eq. (3.6) we first have to find T{X)-matrices, which
are on-energy shell t-matrices of the set of scatterers on central WS-cell,

placed in the CPA-effective medium. The solution is resulting from the eauation

And finally τcp(E) matrix has to be obtained by solving the CPA self-consistency
condition, which we write down as

The number of atom configuration {X} in the above equation, generally will be
equal to 2kb (kb — number of sublattices). In our practice to solve Eq. (3.11) we
use the iteration scheme resulting from the following equation:

Let us assume that at n-step we know TCp and Tn p, so τcp 1 can be readily found
from Eq. (3.12), and subsequently used as input in the (n + 1)-step. To find TnCP
we must perform k-space integration in Eq. (3.7a). Such integration can be done
very effectively with the special k-points techniques [9], if energy points are put on
contour above real axis. Such series of τcp-values was proved to be absolutely con-
vergent [3] and preserving analytical properties of resulting solution with respect
to energy as complex variable. This is important because many other schemes
known in the literature often fail to converge at some points and lead to more
cumbersome and less reliable computational procedure, particularly in materials
with complex unit cell. At this stage of computations GF is fully determined, and
for the central WS-cell with {X}-configuration of atoms is given by (if τ > τ' then
J(Xk) and Z(Xk) should be transnosedl
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With GF as in Eq. (3.13) and Eq. (3.14) we can proceed with computations
of the other relevant physical quantities. But at this point we need Fermi energy
EF, and the poor determination of EF level may affect substantially many quanti-
ties, among them the electronic charges distributions between atoms, and obscure
the self-consistency solution. In our paper we use for determining EF the Lloyd
formula. From this formula the total number of states up to the given energy
can be found to high accuracy. Its generalization to multi-atom alloys with the
spin-dependent CPA formalism is quite straightforward and the main steps are
explained in the following paragraph.

At the start we have to take trace from GF (see Eq. (3.14)) over WS-cell
and spin discrete space

In the integrand in Eq. (3.15) we may think that each atom is placed inside Voronoi
polyhedron Vi (instead of muffin-tin sphere) which make possible to fill up exactly
WS-cell. We assume also that the magnetic structure is collinear (with the same
z-axis of quantization on each atom). Then with the same arguments as in [5] we
can prove that

In Eq. (3.16) Go(E) is free electron contribution given by
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and (km  (E) is energy-dependent normalization matrix with elements

with Ψxk  (E, τ) —> τ 1 (if τ —> 0). With the motivation that we carry our calcula-
tions in the complex energy plane, we rewrite G(E) in the form which was proved
to be very convenient for numerical implementation. For this purpose we write the
logarithmic derivative of the Xk-atom radial wave functions, as

We also require the angular-momentum representation of free-electron GF with
position vectors on muffin-tin spheres

Eliminating the r and B-matrices in Eq. (3.15) in favor of Go(E, k) and
D{xk}-matrices we get our final formula in the form of perfect differential

In Eq. (3.25) matrices are indexed with (kσL) and are defined as
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It is interesting to note that resulting from Eq. (3.25) the total number of states

gives all states below energy E including bound states due to core electrons, which
are present in the second term of Eq. (3.25). This means that prior to any density
of states (DOS) computation we are able to find very accurately EF satisfying
condition N(EF) = Z (with Z equal to the number of electrons in WS-cell). For
the collinear magnetic structure formula Eq. (3.15) and subsequently Eq. (3.25)
can be split into two for each spin direction (v = +, —) separately, resulting into
spin resolved DOS-functions

and the magnetic moment µws of WS-cell

The computation of the spin-dependent charge density on the k-site with Xk-atom
is done using

At this stage of computations we have collected all charges distribution in a system
and we are ready to construct new effective electron potential. This is achieved us-
ing LSD approximation for computing exchange-correlation part of the potential
and applying the Madelung procedure to solve Poisson equation with the crys-
tal boundary conditions. The iteration of this procedure leads to the fully charge
and spin self-consistent KKR—CPA solution. We emphasize that all steps of the
described procedure are formally proved to be correct, and already fully imple-
mented into our computer code.

4. Spin density in momentum space

Our interest here is mostly in the average electron spin momentum density,
which is related to the measured magnetic Compton scattering profiles possibly
in multi-atom random alloys. Assuming that all computations were successfully
completed in the real space, and the CF constructed, we may find all relevant
matrix elements in momentum space via Fourier transformation, i.e.
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Assuming that we found TcP satisfying Eq. (3.11) we may proceed with putting
GF into momentum space at least, by attempting Fourier transform directly on
Eq. (3.14). But going along this way the calculations soon become complicated, as
we will need the integration also over the interstitial region, where GF function is
defined implicitly. Instead, it is easier to start with the Dyson equation, following
the method developed by Mijnarends and Bansil [10],

In paper [11] Bansil et al. show that expression for G CP can be obtained
directly by placing a CP-atom at every lattice-site in the alloy (in our case we put
CP-cluster of atoms with τcp-matrix) and look for GCP which can be found from

Including electron-spin and allowing for few nonequivalent atoms in WS-cell, but
with restrictions that we have alloying only on one of the sublattice with A, or B
atoms TcP has the following form:

In Eq. (4.7) matrix τcp (κ) (κ = „/E) is on-shell energy standard CPA solution, as
described in Eq. (3.12). Then the off-shell elements of tcP(p', p) are given by (see
Bansil et al. [111, Eq. (2.14))
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The advantages of using the above form of GF in Eq. (4.6) for the momentum
density calculations

comes out from the fact that it is strictly preserving the physically essential Her-
glotz properties. Thus the integral interval in Eq. (4.9) can be moved to upper part
of complex energy plane in the similar way as in the case of the spin densities in
coordinate space. But the price for use of the T-matrix based algorithm for com-
puting momentum densities is that we have to know the off-shell atomic scattering
elements t(p', p) (also, for complex value of energy E). As this task is nontrivial,
we will describe the way this problem is solved and applied in our computation
practice. First we recall the assumption that our potential is already in spherical
form with muffin-tin shape. With all self-consistency steps done, we have on each
atom Xk, this potential vσ(Xk)(r) for both spin-direction σ. Let us look now first
on the following integral eauation:

is the radial part of the free-electron GF. With the definition of the t-operator we
may write

The formulas in Eqs. (4.13) and (4.14) allow us to find any off-shell element of
the t-matrix as soon as we find the function SσXk)(r, p). If putting p = t (on

energy-shell) S(Xk ) (r, „c) becomes the usual wave function with asymptotic form

For off-shell momentum p =κ we found convenient to introduce another function
O (Xk ) (r, p) defined as

In Eq. (4.16) the constant value w is given later in Eq. (4.18). From the fact that
Sσl (r, p) satisfy integral equation (4.10) results
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To get function Sa(Xk) (r, p) with asymptotic form like in Eq. (4.15) we must assume
for the constant w in Ea. (4.16) the following value:

where W{ f, g) means Wronskian of two functions. The numerical procedures used
to solve differential equations in (4.17) are well established (e.g. Numerov method)
and can be applied to get R(σXk )

(r), O (σ k )
(r, p) and subsequently S(Xk )

(r, p) in
(4.10). Moreover, the energy value E does not complicate numerical procedure if
it becomes complex. The radial integrals in Eq. (4.14) are all one-dimensional and
are found numerically very fast.

5. Illustrative examples

Charge and spin self-consistent KKR—CPA calculations were carried out for
the number of the transition metals and their alloys, but here we first describe
the results of our computing for Fe and Fe1_ xSix (x = 0.058) alloys, with cubic
(bcc) structure. As already described in Sec. 3 calculations yield electron spin
densities, which are mostly due to electrons with energy close to Fermi energy EF.
These results for radial spin densities are presented in Fig. 1. We observe here that
adding of Si in place of Fe changes only a little the spin densities on both atoms.
It reflects the fact that at low concentrations of Si the spatial disturbance is of the
short range, and on average majority of Fe atoms are unaffected. To contrast this
observation supported in Fig. 1, we present in Fig. 2 all three momentum densities
(spin up, spin down and their difference) along the (1, 0, 0) direction with starting
point at origin. We find by inspecting Fig. 2 that adding of Si (x = 0.058) makes,
at first, all breaks on momentum curves more diffusive. Secondly, for the spin-up
momentum density adding of Si induces a structure with a sharp peak around
momentum 0.8 a.u. This fact reflects the strong changes of the Fermi surface
for the spin-up electrons. But unfortunately, when performing the projection in
Eq. (5.1)

of the momentum density n σ (p) on the chosen direction f and getting the Compton
profile Jσ (p) most of that structure is lost. The last remark was drawn out by
observing results shown in Fig. 3. here, we made plots of magnetic Compton
profiles Jmag (p) = J+(p) — J_ (p) for the three directions (1, 0, 0), (1, 1, 0) and
(1, 1, 1). These profiles reveal remarkable anisotropy, with the most pronounced
differences on alloying for the (1, 1, 1) direction. The similar calculations by full
potential linearized augmented plane wave (FLAPW) method (but only for Fe),
together with comparison with experimental high-resolution (0.12 a.u.) magnetic
Compton profile of Fei_ xSix (x = 0.058) were presented in [12]. The authors
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Fig. 1. Radial spin densities of Fe and Si atoms in Fe1.0Si0.0 (Si impurity in Fe) and
Fe0.942Si0.058 alloys.

Fig. 2 Momentum densities (by KKR—CPA method) in Fe1.0Si0.0 and Fe0.942Si0.058
along the line in momentum space from the point (0,0,0) to the point (3, 0, 0), with
spin-up (upper plot), spin-down (middle plot) and their differences (bottom plot).

concluded that the results shows fairly good agreement between the theory and the
experiment, except the shoulder around 1.0 a.u. In order to give more insight on the
structure seen on magnetic Compton profiles in Fig. 3, we give in Fig. 4a all three
maps of momentum density in Fe in the plane normal to (0, 0, 1) (xy-plane). When
looking at plots in Fig. 4a we find the differences in the structure for spin-up and
spin-down maps, as originating from differences in the shape of the corresponding
Fermi surfaces. Then these differences are transferred onto spin momentum density,
with a valley of negative values and high pile of positive values near (per = 0.5,
py = 0.5). Such shape of the spin momentum field corresponds well to the dip on
the magnetic Compton profiles along (1, 0, 0) direction.

As the next interesting example we take a case from our KKR—CPA calcula-
tions [5] for Co 2_xFexMnSi. These materials in the whole range of concentration
(x = 0.0 to 2.0) belongs to the interesting class of halfmetallic ferromagnets, with
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Fig. 3. Magnetic Compton profiles of Fe1.0Si0.0 and Fe0.942 Si0.058 along the
(1, 0, 0), (1, 1, 0) and (1, 1, 1) directions.

the gap for the spin-down electrons, as it can be seen in Fig. 5, where we plot total
densities of states for both directions of spin in Co2MnSi. The similar plots, as in
Fig. 4a for Fe were made also for the compound Co 2MnSi, and they are shown in
Fig. 4b. When inspecting Fig. 4b, it is most interesting to note that the shape of
surface for the spin-down momentum is smooth, without any breaks. This behav-
ior only reflects the lack of the Fermi surfaces in semiconducting state. The deepest
gradients are at positions of crossing xy-plane with Brillouin zone boundary. On
the spin-up momentum density plot we see breaks in the form of the flat vertical
walls, which are effects of emptying states not surrounded by Fermi surface. This
is an origin of the structure seen in the plot for the spin momentum density in
bottom picture in Fig. 4b. Unfortunately, much of this structure will be obscured
by performing projection on the scattering vector, and making comparison with
experiment less conclu8ive.
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Fig. 4. Momentum densities in the momentum xy-plane for the electrons with spin-up,
spin-down and their difference in: Fe (a) and Co2 MnSi (b).

Fig. 5. Total densities of states in Co2MnSi for the electrons with spin-up and

spin-down polarization.
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