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PROPERTIES OF MAGNETIC NANO-PARTICLES
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The intrinsic thermodynamic magnetic properties of clusters are dis-
cussed using spin wave theory for a Heisenberg model, with a fixed mag-
nitude of the spins Si = S and site independent nearest neighbor exchange
interaction. The consequences of the more realistic Hubbard model is consid-
ered in which we allow for a magnetization profile at T = O and a structural
relaxation, which in turn will give rise to a site dependent exchange inter-
action. It is concluded that correlation effects among the electrons play a
very important role in small clusters, albeit not modifying the thermody-
namic properties drastically. The finite cluster size gives foremost rise to a
discrete excitation spectrum with a large energy gap to the ground state.
The relaxation of the magnetization during the reversal of the external mag-
netic field is discussed. A first step towards a quantitative understanding of
the noneguilibrium statistical mechanics in single-domain ferromagnetic par-
ticles is a systematic study of the kinetic Ising model. Results from Monte
Carlo simulation and droplet theory are reviewed with particular attention to
the effects of various boundary conditions, including a decrease in the num-
ber of surface bonds and an addition of surface anisotropy. A new dynamic
"outside-in" flip mode is proposed.

PACS numbers: 75.30.Ds, 75.40.Gb, 76.20.+q

1. Introduction

In short, small magnetic particles are prime examples of mesoscopic quantum
systems. The magnetic properties of clusters of transition metal atoms are in focus
in order to elucidate how magnetism evolves from the atom to the bulk. This is
of importance for the potential applications of the clusters in recording materials
and in catalysts. The intrinsic thermodynamic magnetic properties of clusters are
discussed using spin wave theory for a Heisenberg model. The consequences are
considered of a quite realistic model, in which we allow for a magnetization profile
at T = O and a structural relaxation, which in turn will give rise to a site depen-
dent exchange interaction. We have also considered longer range interactions and
effects of possible enhanced surface anisotropy. The demand for increased storage
density in magnetic recording media has prompted a great deal of experimental
interest in single-domain ferromagnetic particles, which typically have diameters
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of less than one micron, since each can in principle store one bit of data. However,
in order to serve as reliable storage devices, the particle must be capable of retain-
ing their magnetizations for long periods of time in arbitrarily oriented ambient
magnetic fields i.e. they must have a high coercivity and a large remanence. For
both this reason and the more fundamental one: does quantum tunneling occur
in mesoscopic systems (a small Schrödinger-cat-problem), the relaxation of the
magnetization in small particles is of great interest. A brief review of the present
knowledge will be given. As a first step towards a quantitative understanding of
the nonequilibrium statistical mechanics in single-domain ferromagnets is a sys-
tematic study of the kinetic Ising model. Progress in this direction has been made
by several authors [1-3]. Richards et al. [4] studied the size dependence of the mag-
netic switching field for clusters with periodic boundary conditions. Using Monte
Carlo simulation and droplet theory we [5] have recently extended this work by
considering the effects of free boundary conditions, including the addition of sur-
face magnetic fields or increased number of or strength of the surface bonds, such
as may occur as a result of surface reconstruction. The switching field Hsw(τ)
is defined as that magnitude of the reversed field at which the magnetization of
the particle on average reverses (passes through zero) for a chosen waiting time T.

This is an important measure for the relaxation. When the clusters become suffi-
ciently large they are no longer "super-paramagnetic" and the dipole energy makes
them split up into domains which can close the field lines. The classical theory [6]
therefore predicts Hsw (r) = O for sufficiently large clusters (particles). However,
Richards et al. [4] found that there is an optimum Hsw (r) even when neglecting
the dipole effect. Thus, there seems to be a much smaller optimum cluster size
for memory properties at least for clusters with periodic boundary conditions or
sufficiently long waiting times. This feature is also found for the new dynamic flip
model, here proposed.

First, we address the intrinsic thermodynamic magnetic properties using the
spin wave theory [7, 8] for an effective Heisenberg model. The spin wave theory
at finite temperature and the thermodynamics for the itinerant magnets are ex-
ceedingly difficult [9]. However, it is a good approximation to consider that the
3d-electron spins around a site i are performing a coherent precession which can
be represented by the precession of an effective Heisenberg spin Si. Detailed inves-
tigations by in particular Pastor, Dorantes-Dávila and collaborators [10] using the
Hubbard model, have shown that for small clusters the magnetic moment increases
strongly towards the surface of the cluster, the cluster structure is relaxed — and
in addition the average moment in the clusters is larger than in the bulk. The
results by Pastor et al. [10] will form the basis for the pre sent discussion of the in-
fluence of the electronic modifications on the thermodynamic magnetic properties
of nanometer sized particles. A recent similar study of the 4d metal clusters [11]
also shows strong effects of the electron correlations, in particular by making some
materials, like Rh; magnetic in the nano-particle size.

Experimental investigations of unsupported Fe- and Co-clusters have indeed
indicated that the atomic magnetic moments are larger in the clusters than in
the bulk [12]. Neutron scattering experiments of 2-3 nm iron particles in an alu-
minia matrix have recently been reported [13]. Further scattering measurements
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on clusters in less active media, e.g. the noble gases, would be of great interest,
in particular also inelastic measurements. The reduction of the number of nearest
neighbors for the atoms at the surface is expected to decrease the effective tran-
sition temperature Tc to magnetic order inside the clusters, as also found in our
actual calculations [7, 8]. However, experimentally it has been reported [14] that
T, is not reduced relative to that for the bulk. This represents a puzzle.

Any change in the surface restoring force preventing the creation of a spin
flip (or deviation) will have a drastic effect on the relaxational behavior. Thus a
reduction in the coordination number would favor spin reversal of the cluster to
start from the surface. Contrary, an increased surface anisotropy or larger surface
moments or interactions will counterbalance that effect. We shall in the following
assume that the spin structure of the small cluster is collinear. It is known that
both surface anisotropy [8] and long-range interactions [15] can cause the structure
to be canted. However, for the spin wave theory, which follows, this only represents
a small technical problem of going over to a local coordinate system with proper
quantization axis. This modifies the interaction without changing the basic physics.

2. Theory

The theory of the magnetic excitations and the method of calculation have
recently been described in detail [7, 8], therefore only a few basic steps will be
given here. We consider an effective (collinear) Heisenberg model

We shall allow both the exchange interaction Jij and the spin values Si at T = O
to vary with the sites i, j in the cluster. We have also considered the effect of inter-
actions beyond the nearest neighbors. This is usually required in order to describe
the spin waves for the transition metals by an effective Heisenberg model. The
equation of motion for the spin deviation operator St for a ferromagnetic cluster
can in a symmetrized, site-dependent random phase approximation be written [8]

= (SL) is the thermally averaged mean value of the spin at site i, which is to be
calculated self-consistently. By iteratively improving the Mi-profile the eigenvalue
problem can be solved by a direct numerical diagonalization, yielding both the
N discrete eigenvalues Ep and the corresponding (normalized) eigenfunctions ^ip
describing the value of S$ for each state p. In a classical picture the amplitude
SL can be considered to be the opening radius of the cone on which the spin at
site i precesses, S+(t) = S+exp(iωt). In the bulk case the amplitude St = S+
is site independent, and the different states are characterized by a wave vector
q and a site dependent phase factor exp(iq • r j ) for the site at 77 (Bloch-states).
In the clusters the eigenstates have site dependent amplitudes, and surprisingly
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Fig. 1. The wave function of the first excited state of a bcc 55-spin-cluster illustrated
in real space for the upper half of the cluster (one of three triply degenerate states).
The cluster has been cut along the [100] planes: (a) is the central plane and (b) and
(c) the two upper planes. The height of the spikes indicates the magnitude of S+, and
the direction (up or down) indicates the sign. A change in sign corresponds to a phase
shift in the precession movement of 180°. The behavior of the lower half of the cluster
is given by inversion around the center. 

we find for the investigated cluster sizes that the spins are precessing in exact
phase or anti-phase on the opposite sides of the cluster, see Fig. 1, which shows
the wave function Op for one of the first excited states, p. It is intriguing to
imagine how these states evolve into Bloch states for infinite cluster sizes. The
variable amplitude is a consequence of the open boundary conditions. For clusters
embedded in a magnetic medium these would change and one would expect less
variation with site. The states with the minimum relative change from site to site
and few nodal planes have the lowest energy, i.e. those with large amplitudes at
the surface. Since these states are first populated at finite temperatures it is clear
that a more rapid decrease in the magnetization is predicted for the surface layers.
The magnetization is given by [8]

where np = [exp(Ep /kBT) —1] -1 is the Bose weight of the state p, and |ψpI2 is the
quantum-mechanical probability of finding the spin deviation at i. The neutron
scattering cross-section S(q, ω) is also given in terms of the eigenfunctions
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Finally, the effective transition temperature Tc (determined by a maximum sus-
ceptibility criterion) can be calculated using a generalization of the spherical ap-
proximation [8]. It is the temperature T = Tc which fulfills the following equation
for 1/x --> 0:

Here TMFC(bulk) =J0S(S+1)/3kB, Jo = Σp Ji=0 i+ p , where pis a nearest neighbor
index, and x is the cluster analog of the uniform susceptibility. Equation (5) allows
also x(T) to be evaluated as a function of temperature for T > Tc .

3. Results

First, let us summarize some of the results obtained assuming, at T = 0,
where Si = S is site independent and considering only nearest neighbor (nn)
interaction Jib = J1δ(i — j + p). The neutron scattering cross-section is shown in
Fig. 2 for two high symmetry directions of q, (a) [100] and (b) [110] for a 59 bcc
cluster. It shows a discrete spectrum and a large energy gap DE to the first excited
state. The order of magnitude of AE is ∆E/kB 30 K for a 749 spin a-iron cluster
and 140 K for a 9 spin cluster. The spectrum is broadened in the wave vector
q, since q is not a good quantum number, as it is in the bulk case. We notice that
although the states p are the same, only a few can be seen simultaneously for q
in the different directions. Notice in particular that the lowest state is visible in
both directions. In a sample containing randomly oriented (mono-disperse) clusters
we expect S(q,ω) to show all the p energy levels, only slightly more broadened
in q than in the high symmetry directions, Fig. 2. We remark that most of the
levels are at least 3 times degenerate in energy due to the cubic symmetry. This
should make the gaps easier to detect experimentally. Random perturbations of
the structure, and thereby random modifications of Jij, lift the high degeneracy
of the spectrum [8] smearing the energy gaps, but it has little influence on the
thermodynamics of the system. The spectrum (Er ) is of course different for clusters
with different number of spins. Therefore, for a poly-disperse sample of clusters
there is an additional smearing of the energy gaps, but AE should still be clearly
observable. The presence of the large energy gap is a direct consequence of the

Fig. 2. Neutron scattering cross-section S(q, w) calculated for q in the (a) [100] and
(b) [110]-direction for a bcc cluster containing 59 spins. The_ solid curves in the lower
plane are the bulk dispersion curves in the same directions.
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smallness of the clusters. This energy gap is much larger than the contribution
to the gap coming from single site crystal field anisotropy or from the largest
available external magnetic fields [8]. This is important, because ii shows that
the excitations in some sense resemble those of strongly anisotropic model, like
the Ising model, rather than the Heisenberg model. This partly motivates why it
makes good sense to perform the relaxation studies using the simpler Ising model.

The energy gap AE gives in principle rise to an exponential behavior of the
mean magnetization deviation ∆M(T) = S — ii E_ (s=). however, a good fit can
be made to an effective power law

in a large temperature interval, up to 35% of Tc . The effective exponent a de-
creases linearly from about 3 to the bulk value 3/2 as a function of decreasing
inverse cluster radius 1/τc. The constant B depends (as in the bulk case) on the
average number of neighbors per site and is thus dependent on the structure of the
cluster. The exponent is independent of the structure (bcc, fcc or random) for a
cluster containing the same number of spins. A power-law temperature dependence
of the magnetization with a larger than bulk exponent has indeed been found ex-
perimentally for 3 nm Fe/C-particles by Linderoth et al. [16] in good agreement
with the theory [7, 8]. In Fig. 3 the magnetization is shown as a function of T and
reciprocal cluster radius 1/τc for the center spin (short-dashed line), the average
moment (full line) and the outer shell (long-dashed line). The average moment
calculated by the spin wave theory extrapolates naturally (thin line) to the Tc as
calculated from Eq. (5). For a 51 bcc cluster 21 is found to be reduced to 59%
of the bulk value Tc (bulk). For increasing cluster sizes, Tc is seen (thin dashed
line) to approach Tc (bulk) for 1/τc --> 0, following an expected scaling behav-
ior [8]. Summarizing, we have found that the magnetic behavior of the clusters is
significantly different from that of the bulk, with a larger effective magnetization
exponent 3/2 < a < 3 which is independent of the structure and perturbations
of the structure. Further, a rapidly decreasing surface magnetization and a sub-
stantially reduced Tc , scaling with the average coordination number per spin are
found. It is clearly of interest to investigate how robust these conclusions are to

Fig. 3. The calculated magnetization versus temperature and inverse cluster radius
1/τc of the center spin (short-dashed), the average magnetization (full line) and that
of the outer shell (long-dashed). The thin lines extrapolate to the calculated T c from
Eq. (5). The number of spins are indicated as well as Tc(bulk) for 1/τc = O.
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the electronic modifications of the model. These modifications are expected to be
relevant for small metallic clusters.

4. Influence of electronic properties, structural relaxation

Only for the smallest clusters with a few atoms the electronic and struc-
tural properties are calculated from first principles. Since we are here interested
in nanometer sized particles we shall base our discussion on the calculation of the
moment distribution in a N = 51 unrelaxed bcc iron cluster by Pastor et al. [10].
They used the unrestricted Hartree—Fock decoupling of the Hubbard model, which
can be written schematically (neglecting the band indices)

where tit is the tight binding hopping term, a — the spin index, and UΔn(i)
is a "penalty field" term. This strongly discourages large (square) amplitudes of
|e(7| 2 = ńσ(i) in the outer shells in order to minimize charge transfer ∆n(i) =

n|(i) + n|(i) — no in the presence of the large Hubbard U term, nσ(i) = (ńσ (i)) is
the number of electrons (charge) around site i and no is the average charge. The
magnetic moment in units of µB is μ(i) = n|(i) — nl(i) a Si of Eq. (1, 2), and
the exchange integral J splits the a = T and J. states. Ea and ea are constants.
The diagonalization problem of Eq. (7) for ciσ, is identical with that for St in
Eq. (2). For the statistics one must remember that electrons are fermions, whereas
the spin deviations behave as bosons. It is instructive, as an alternative to the
traditional projected density of states argument [10], to think about the problem
in terms of the wave functions found for the spin wave problem. For illustration
we have calculated the tight binding result, i.e. not including the UΔn(i) term in
Eq. (7). By filling up the electrons to the Fermi energy in the spin split states the
large amplitude surface states for both T and J, get rapidly filled up and cancel in
µ(i); consequently the tight binding approximation suggests a decreasing moment
towards the surface. For the electrons it is essential to include the charge trans-
fer penalty, which strongly mixes the states in energy since U/tij is large. The
shell moment for a 51 unrelaxed bcc-iron cluster calculated self-consistently [10]
including the penalty term Eq. (7) increases above the bulk value at the surface.
A lower than average moment in the center and a strongly increasing moment Si
for the outer shells were found. This can easily be incorporated in the solution
of Eq. (1). Calculating Mi(T) self-consistently from Eq. (3) and fitting to Eq. (6)
we find no change, within the uncertainty of the fit, relative to the uniform case.
Using Eq. (5) we find a small increase in Tc of 5%, mainly due to the larger av-
erage moment µo = 1.10μ(bulk) found for the cluster by Pastor et al. [10]. The
calculated magnetization extrapolates naturally to the calculated Te .

Another modification to consider is variations in Jij  due to structural relax-
ation of the cluster, which can strongly alter the overlap terms in the exchange
integrals. In an unrelaxed cluster it is not possible to have a non-uniform moment
distribution at T = O without a certain charge transfer. Suppose for simplicity
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that we have fully occupied I bands n|(i) = n.°r therefore the moment variation
arises solely from the J. bands nl(i) = n0+ Δn(i). Then it is easy to see that the
charge transfer is related to the moment profile by ∆n(i) = μ(bulk) — μ(i). Let us
make a crude model for the lattice relaxation by requiring that the electron density
around each nucleus is equal to that of the bulk and enforcing this by adjusting the
Wigner—Seitz radius τws to account for excess electrons. For iron (atomic state:
argon-3d64s2 ) with 8 conduction electrons per nucleus we then argue as follows.
In a sphere with volume 43 τr3vs there are 8 electrons in the bulk, whereas for the
cluster there are 8 + ∆n(i) in the volume 43 r3. Consequently, we need to adjust
the radius as ri = τws[1 + 3XS ∆n(i)]. We now distort the bcc cluster by packing
these spheres of unequal radii (0.98r;). The relative distance between the spins
can be written rij = R+ ∆τij = R{1 + 48 [∆n(i) + ∆n(j)]}, where R= a-4/2 is
the bulk distance. We apply the argument to the 51 bcc cluster studied by Pastor
et al. [10]. The result is an expansion of the core of the cluster and a contraction
of the outer shells, with lattice constant changes of the order of 1%, as generally
expected [10]. For all atoms the displacements are along the cubic symmetry di-
rections, except for the outermost shell, which is more drastically reconstructed.
However, the nearest neighbor coordination number is unchanged by these dis-
placements and the bond directions are only slightly modified. Now, suppose the
exchange constant in Eq. (1) depends strongly on the distance between the spins
J(R d- ∆τ) ti J(R)(1 + x*),  where |x|= 10. The site dependent Heisenberg
interaction in the relaxed cluster is then

This modification of Jib can effectively be included in Eq. (1), by using Jig =
J(R) = J1 and instead introducing the effective moments µeff(i) = µ(bulk) —
(1 — r)∆n(i). Notice that for x = O we have the unrelaxed result [10]. For iron
x is expected from various experimental facts [17] to be positive x +10. There-
fore, including the lattice relaxation in this crude model tends to effectively reduce
the moment profile and only perturb the already minimal effect of a magnetization
profile for iron.

A more effective way of influencing Tc might be if the lattice distortions
were able to change the average coordination number. Even when making the
unrealistic assumption that all surface atoms have reconstructed to a closed packed
coordination, all else equal, Tc is only raised by a few %. However, for the relaxation
properties, the nature of the surface is playing a dramatic role in defining the
minimum energy barrier needed to overcome in the flip process and in determining
where the process may initiate.

5. Magnetic relaxational behavior

Small magnetic particles exhibit so-called superparamagnetism [18], which
means that they at a certain level of description, namely the thermodynamical,
behave as a giant spin S = E Si consisting of the sum of all the individual ones.
It would be highly interesting if the picture holds also in a quantum-mechanical
sense, such that the particles have only two states relative to an external field par-
allel or anti-parallel: |Sz) = |f). If the states are separated by a (fixed) barrier we
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would have a nice physical representation of the fundamental double well problem
in quantum mechanics. The theory for this and the relation to micro-magnetism
has been long discussed by Leggett et al. [19]. The essential result is that there is
a quantum-mechanical escape-rate T from a metastable state which does not exist
in classical physics. The logarithm of F is proportional to the barrier height Vo
(and width), divided by the attempt frequency coo, but not temperature. A similar
thermodynamical (classical) rule was formulated by Arrhenius [20] in which enters
the barrier height divided by the temperature. Thus we have two possibilities for
the decay in magnetization M (an indicator of the occupation of the metastable
state). From a damped harmonic oscillator equation or a Langevin-type equation

dtMoc— a6 F + r.f. where the free energy F (thermodynamic potential) is as-
sumed to be of the form F = 2 M 2 /x + 4 bM4 + ..., we then expect the relaxation
to be exponential for the double well potential

where the kinetic coefficients in the quantum-mechanical (QM) and thermody-
namic (TH) cases, respectively, are

There are indeed experimental systems in which the relaxation is not found to de-
crease even when cooling to very low temperatures [21]. However, since long it has
been known that the magnetic relaxation is usually not following the exponential
decay (9) as e.g. found in the decay of unstable nuclei. A variety of other time de-
pendences for M(t) has been proposed, including stretched exponential behavior.
A commonly accepted dependence is a logarithmic decay after a chosen time to

This can be derived both in the case where one assumes a distribution of barrier
heights, and in the case where one assumes a single barrier height, which depends
on M(t), linearly. This can easily be seen from (9) [21]. The often observed depen-
dence (11) has lead to the introduction of an experimental concept, the magnetic
viscosity (conventionally denoted S), defined as

The kinetic coefficient A defined in this way is supposed to be related to F in (10)
as A oc 1/1n r. Thus S(T) is supposed to be proportional to T in the classical
case, but to level off at low T if the quantum tunneling takes place. This is indeed
seen for e.g. Dy clusters on a Cu matrix [21]. Experimentally the situation is
made difficult because it is hard to obtain mono-disperse systems, i.e. ensembles
of identical, non-interacting particles, supposed to have just one type of energy
barrier.

Most likely the simple double well representation of the problem is much too
simplified for a reliable description at the level of the relaxation phenomena. In
a first attempt to attack the problem from a modern statistical mechanics point
of view Richards et al. [4] studied the relaxational behavior as a function of size
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of small Ising systems. We have in the first part of the paper demonstrated that
the energy spectrum is discrete with gaps of the order of magnitude of a signifi-
cant fraction of the Heisenberg interaction energy, roughly: ΔE = cJS/N 3 , where
c3 = 4π4/3. Therefore, the Ising representation is probably even a superior simpli-
fied model to use for the Monte Carlo simulations, than a straightforward, classical
simulation of the Heisenberg model [3] which neglects the quantum-mechanical
discreteness due to the size effect. For simplicity periodic boundary conditions
were chosen by Richards et al. This was to eliminate that the spin flip would
start (nucleate) at any particular place in the "cluster" and the problem became
similar to a usual first-order transition from a metastable state to a stable one.
For this it is well known that there exists a spinodal line in the (T, H) plane,
which (roughly) separates the growth mechanisms into (i) growth by nucleation
of a supercritical droplet (ii) exponential growth of magnetization waves. It was
found that the magnetization reversal of the clusters was of the nucleation type
with several new regimes. (a) For very small clusters the thermal excitations were
sufficient to spontaneously flip the magnetization even in zero field, therefore
Hsw (T) = 0, (b) a maximal switching field Hsw(T) was found near the ther-
modynamic spinodal line, (c) a decrease was found at a "dynamic spinodal line"
at which the coalescence of several droplets nucleated at different positions domi-
nated the flip process. A thermodynamic theory for the formation of the droplets,
taking into account the unfavorable interface free energy and the favorable inte-
rior free energy gave a quantitative description of the behavior. In Fig. 4 there is
shown the size dependence obtained by Monte Carlo simulation, demonstrating a
clear maximum of Hsw (T) even without dipole forces included, just for the reason
of different flip mechanisms.

However, this study neglects one of the most important features of small
particles, namely the presence and the dominant influence of the surface. To
investigate the effect of that, various surface configurations without any singu-
lar points were investigated, such as semiperiodic systems and free, circular or
octangular systems with the number of neighbor bonds, which could be varied
from equal to that in the bulk to half of that in the bulk, see Fig. 5. Further, the
effect of increasing the surface bond strength, and of adding an anisotropy surface
field were studied. The main effect of the presence of a surface at which it costs less
energy to flip a spin, is that the nucleation is initiated at the surface and a critical
droplet size is reached before the previously studied bulk nucleated droplets can
play a role. The switching field is therefore much reduced, as can be seen in Fig. 4.
In particular, for short waiting times the peak in Hsw (T) as a function of system
size disappears in the simulated results. For very large systems the bulk regains
the dominant role and subsequently the nucleation in the bulk becomes the most
likely for entropy reasons. Then, Hsw(T) is predicted to decrease again for suffi-
ciently large systems even in the open boundary cases and without invoking the
dipole effect, which is in fact found by the Monte Carlo simulation for long waiting
times.

Characteristic of the magnetic switching process is that after a critical size
droplet is formed, the switch happens very rapidly, seen on the scale of the average
waiting time. Therefore it is not a wild assumption to assume that it happens in
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Fig. 4. The switching field as a function of system size obtained by MC for periodic
systems (dashed lines, [4]) and octagonal systems [5] with half the number of the bulk
bonds at the surface, for various values of the surface field HE (in units of the Ising
interaction J). (a) T = 1.3J 0.5729T and r = 1000 MCSS, (b) T = 0.871 and
r = 100 MCSS.

Fig. 5. Example of a constructed surface with a definite number of neighbor bonds: part
of a specially constructed octagon where all surface sites have two bonds (half that in
the bulk). Similarly a spherical cluster with reconstructed surface has been constructed
such that all spins have 4 bonds, including those at the surface.

as "instantaneous" jump between two states. The transition state, which in the
sense of quantum mechanics is a superposition state, is in the classical Monte Carlo
simulations simply an intermediate growing state. Each spin flip is governed by the
Metropolis rule: gain energy if possible, and loose an energy V by the "probability"
exp(—V/kBT). The growth stops at T 0. Therefore, such simulations [5,3]
cannot strictly speaking shed light on the quantum tunneling problem, although
they are very useful in understanding the general non-equilibrium behavior at
higher temperatures. Probably, the quantum-mechanical flip process (in which
each spin is allowed to tunnel to another state) is somewhat similar to that here
found at higher temperatures, indicating that the picture with a single total barrier
is far too simplified — whereas a M-dependent barrier seems more reasonable.
This would support the experimental finding of non-exponential relaxation (9)
and rather a logarithmic dependence (11).

We may get a rather different picture of the switching event if we go back to
the spin wave calculation for the more realistic Heisenberg model. Although not
exact, this method retains a number of important quantum effects, special for the
small cluster problem. We found that the (triply degenerate) first excited states
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gave the largest amplitude for spin deviations close to the surface. In these states
the spins at opposite sites in the cluster are precessing in exact antiphase and rep-
resent a dynamical tilting of the spins in the direction of a reversed external field.
The field reduces the energy gap and makes the mode go soft, indicating that the
chosen parallel ground state ceases to be valid. In the random phase approxima-
tion we can populate the state by many independent (opposite) spin deviations,
the more the smaller the energy gap, which is reduced with the decreasing sur-
face magnetization. Going beyond the linear spin-wave approximation, additional
phase related excitations with large amplitudes at the surface will be created, and
so on, lowering the energy further as a non-linear function of the field. A soft mode
scenario then arises in which the flip process can be described by a concerted flip-
ping of the surface spins (opposite surface spins canting in opposite directions). If
a sufficiently large amplitude wave is created, the central spins are carried along,
much like inverting a sock. We shall call this an "outside-in" flipping. This flip
mode differs obviously from the nucleational picture offered by the Ising Monte
Carlo simulations, where a concerted wave-like option is not considered. It also
differs from the classical Brown–Néel assumption of a uniform rotation or of a
single domain wall propagating through the cluster, a picture inspired from bulk
behavior. Since the energy gap decreases with particle size the switching field
also decreases. At very small sizes we, as above, expect spontaneous flipping and
Hsw = 0. Thus we argue that there is also an optimum Hsw for the "outside-in"
flip model, without invoking dipole effects.

6. Conclusion

We have considered extensions of the nearest neighbor Heisenberg model and
shown that our results are robust to the most compelling intrinsic modifications. In
particular, we have found that the effective magnetization exponent is invariable.
The inclusion of a magnetization profile and of lattice deformations at T = O for
the N = 51 cluster does not alter the calculated T, significantly; it is reduced to
about 60% of the bulk value Tc (bulk). Similar conclusions will hold for larger N.
We have considered models for the magnetic relaxation of the small particles.
Simulations for an Ising model show the possibility of having an optimum size
with respect to achieving a large switching field. This depends sensitively on the
assumed boundary conditions. A new scenario for the flipping in terms of the states
obtained in the spin wave theory is outlined.
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