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The effect of electron confinement in ultrathin layered magnetic sys-
tems is discussed. This leads to quantum size effects which can be observed
by photoemission in overlayers. In magnetic multilayers, spectacular oscilla-
tory behavior of the interlayer exchange coupling results from the electron
confinement. The quantum size effects manifest themselves also in the mag-
neto-optical properties of ultrathin films.
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1. Introduction

It is well known that confinement of electron motion leads to a size quanti-
zation of the momentum. In solid state physics, this phenomenon has been widely
investigated mostly in semiconducting materials; this has led to numerous appli-
cations in which the quantum size effects are used to tailor the electrical or optical
properties of semiconductor devices [1]. In layered superstructures, the confine-
ment is one-dimensional, with the motion of electrons in the two other directions
remaining free; confinement of electrons in semiconductor heterostructures has
provided renewed insight into fundamental phenomena such as quantum tunnel-
ing [2] and allowed the discovery of fascinating novel effects such as the quantized -
Hall effect [3]. One can also confine the electrons in two, or even three dimensions,
to form systems called, respectively, quantum wires, and quantum boxes.

In contrast to this, the investigation of quantum size effects in metallic mag-
netic materials can be considered as still being in its infancy. Several reasons can
be invoked to explain this situation:

e In semiconductors, the density of carriers is very low, so that the relevant
states are usually located very close to the conduction or valence band edge
and have wavelengths ranging between 50 and 500 A; thus, the character-.
istic size for quantum confinement is from a few tens to a few hundreds of
angstroms. In metals, however, the electron density is very high as com-
pared to semiconductors, and the relevant lengthscale is the Fermi wave-
length, which is of the order of the crystalline lattice parameter, i.e., a few
angstroms. Thus, the observation of quantum size’effects in metals generally
requires the preparation of samples with perfectly controlled thicknesses, at
the scale of one atomic layer (AL);
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e The growth of metallic superstructures is not yet mastered as well as for
semiconductors;

o From the theoretical point of view, the electronic band structure of tran-
sition metals is far more complex than the free-electron-like sp bands of
semiconductors; this makes the theoretical analysis more complicated.

In spite of the difficulties mentioned above, the study of quantum sizeeffects
in layered magnetic systems has attracted considerable attention in the past five
years, and encountered a number of significant successes. The aim of this paper is
to give an overview of this field.

2. Quantum size effects in layered magnetic systems

2.1. Change of spectral density due io eleciron confinement
in a metallic overlayer

In metals, the high density of electrons ensures a very eflicient screening
of the Coulombic potential of defects. Thus, already at a distance of one to two
atomic layers away from a surface or an interface, the electrons experience the same
potential as in the bulk of the material, and the potential changes significantly only
in the immediate neighboring of the surface (resp. interface).

The electrons in a metallic overlayer are confined by the vacuum barrier
on one side, and by the substrate barrier on the other side. As we shall see, the
electronic states in the overlayer can be described in terms of the band structure
of the corresponding bulk material and the reflection coefficients on the vacuum
and substrate barriers. Since the in-plane translational invariance is preserved in
the layered structure, the in-plane wave vector &y is conserved after the reflection
and remains a good quantum number. So, for a given k|, the problem reduces to
an effective one-dimensional problem. The perpendicular wave vector of a state
with a positive (resp. negative) perpendicular velocity v, will be noted by k'j_'
(resp. k7). The corresponding velocities will be noted as vI and v, respectively.
The (complex) reflection coefficients on the vacuum and substrate barriers are
noted, respectively, by ry and rs. In general, »y and rs are functions of ¢ and k.

The vacuum barrier is perfectly reflecting for electrons having an energy be-
low the vacuum level; thus, the corresponding reflection coefficient has a module
|r¢| = 1. On the other hand, the module of the reflection coefficient on the sub-
strate, |rs| may be smaller than one or equal to one, depending on € and k). If some
propagative states are available in the substrate for the corresponding ¢ and kj,
one generally has |rs| < 1; if there is a local gap in the substrate band structure for
the corresponding ¢ and kyj, then one has a total reflection, i.e., |rs| = 1. Hereafter,
the former situation will be referred to as partial confinement, and the latter one
as total confinement. In general, r, and r; can be expressed as

ry = |ry| exp (i®y), (1)
and

rs = |rs| exp (i9s) , (2)
where @, and & are the phase shifts associated with the reflection on the vacuum
and on the substrate, respectively.
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2.1.1. Limit case of totlal confinement

Let us first examine the situation of total confinement. The phase shift as-
sociated with a round trip in the overlayer is given by

& =0, +P+ (k} —k7)D, 3)
where D = Nd is the thickness of the metallic overlayer (d is the thickness of one
atomic layer). The allowed states are those for which

® = 27n, (4)

where n is an integer. This is analogous to the Bohr—-Sommerfeld quantization
of orbits in atoms. Thus the kj-projected density of states (or spectral density),
n(ky,€), consists of a set of sharp peaks. The peak separation is given by

s = 27 . mhui” )
2Nd/(hvl™)+d®,/de + dB,/de =~ Nd '
where
2 1 1
Sl ©

For a given energy, as the thickness of the overlayer is varied, quantized states pass
periodically through the energy under consideration, with a period given by*
2
A = =T
|kt — k1]

(7)

2.1.2. Limit case of weak confinement

Let us now discuss the opposite limit case, in which the confinement strength

|Pyrs| is much smaller than one. Consider an electron of energy ¢ and wave function

. ¥(r) travelling through the overlayer. The electron is reflected on the vacuum and
substrate barriers, so that, to the first order in |ry7s|, the wave function becomes

W)~ p(r) [L+ ryrBE-EDD 4] (8)

The interferences give rise to a change in the density of states. The relative change
g(ky,€) of spectral density (i.e., normalized to the spectral density in absence of
barriers for a thickness D) can be expressed as

g(ky,€) = M ~ 1+ 2Re [rvrsei(ki—kI)D] 4o (9)
| 9 ()] |

to the lowest order in |rgry|. In the case of weak confinement, the interferences due

to reflections on the vacuum and substrate barriers leads to a sine-like modulation

of the spectral density n(k,¢), with the same period

2w

A= ———,
kT — k7]

(10)

*Since the overlayer thickness varies only by increments of d; it is clear that periods A smaller
than 2d are physically meaningless. Thus, in Eq. (7), we have to add pr/d to kj’_ — k7 with p an
integer chosen such that Iki — k7 +»r/d| < 7/d, i.e., such that A > 2d; in other words, wave
vectors are folded into the first Brillouin zone. Such a procedure will be implicitely meant when
writing down an expression like Eq. (7).
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as for the total confinement case, and an amplitude proportional to the confinement
strength |rsry|. This is easily understood in terms of interferences. Whenever the
phase-shift @ corresponding to a round trip in the overlayer (Eq. (3)) is equal to
an integer multiple of 27, constructive interferences occur, and hence, an increase
in the density of states. Conversely, if @ is equal to a half-integer multiple of 2,
the interferences are destructive, leading to a reduction of the density of states.

2.1.8. General case

In the general case, the calculation of the relative change of spectral dehsity
i1s more complicated. It can be performed by using the Green’s function formal-
ism [4,5]. The result is
1+ reryel(kL—k1)D

i(kt-x7)D |’

g(ky,€) = Re (11)
One can easily check that both limit cases (total confinement and weak confine-
ment) are obtained from this general result. The behavior of g(ky,¢) versus over-
layer thickness D is shown in Fig. 1, for the weak, intermediate, and total confine-
ment cases.
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Fig. 1. The variation of the relative change of spectral density due to confinement, as a
. function of overlayer thickness D. The curves labelled a, b and ¢ correspond respectively
to the cases of weak confinement (|rs7v| = 0.1), intermediate confinement (|rsrv| = 0.6),
and total confinement (|rsry| = 1).

To summarize, the confinement of electrons in the overlayer leads to an en-
ergy and k) dependent modulation of the spectral density versus overlayer thick-

tThis result is valid when the overlayer thickness D is sufficiently large for the energy depen-
- dence of the reflection coefficient to be small as compared to the one of the exponential factor in
Eq. (11).
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ness. The period depends only on the overlayer bulk band structure, and is given by
A =2n/|kT — k7| In contrast to this, the phase and amplitude of the modulation
depend on the matching of the overlayer wave functions with evanescent waves
in the vacuum and with the wave functions in the substrate; the phase is given
by &5 + $y = arg(rsry), while the amplitude is determined by the confinement
strength |rsry .
2.2. Photoemission and quanium size effects in magnetic systems

The method which has been most used to investigate quantum size effects
is angle-resolved UV photoemission spectroscopy (and to a lesser extent, inverse
photoemission). Peaks in the photoemission spectra due to size quantization have
been observed in various systems.

2.2.1. Ferromagnetic overlayer

In a ferromagnetic transition metal, the exchange interaction leads to a split-
ting between the 3d bands of opposite spin directions. Thus, the effective potential
experienced by the electrons is spin-dependent. In the bulk-like region of the fer-
romagnetic overlayer, the majority and minority spin electrons of energy ¢ and
in-plane wave vector kj propagate with a perpendicular wave vector Icfr and kfi,
respectively. Furthermore, the spin-dependence of the potential in the overlayer
implies that the reflection coeflicients on the vacuum and substrate barriers are
also spin-dependent.

The effect of confinement of electrons in the overlayer due to reflections
on the vacuum and substrate barriers is given by the same expression as for
non-magnetic systems (Eq. (11)), by replacing respectively g(k,¢€), rv, rs, and
k_:!t_, by g°(k,€), r¢, rZ, and kf", where o = (1, ) is the spin index.

As for the non-magnetic case, the confinement leads to a periodic modulation
of the spectral density versus overlayer thickness; however, in the magnetic case,
the period, the amplitude, and the phase of the modulation depends on the spin
of the electron.

Only a few number of experimental investigations of quantum size effects
in ferromagnetic overlayers have been published so far. A notable exception is
the work of Clemens et al. [6], who performed spin-polarized photoemission in-
vestigations of quantum size effects in Co overlayers on Cu(001). They observed
spin-polarized quantum size effects, from which they determined the spin-resolved
band structure of fcc Co along the I'-A-X high-symmetry line.

2.2.2. Paramagnetic overlayer on a ferromagnetic substrate

The case of a paramagnetic overlayer on a ferromagnetic substrate has been
investigated much more. In the bulk-like region of the overlayer, the propagation of
the electrons is governed by the chf wave vectors which are spin-independent. The
reflection coefficient on the vacuum potential barrier, ry, is also spin-independent.
However, the ferromagnetic substrate constitutes a spin-dependent potential bar-
rier; thus the substrate reflection coefficients for electrons with a spin parallel to
the majority and minority spin directions in the substrate, respectively »! and r},
will be different. It is convenient to define, respectively, the spin average as

Py = # (12)
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and the spin asymmetry as

Arg = E——le (13)
2

In this case, the electron confinement in the overlayer gives rise to a spin-de-
pendent modulation of the spectral density versus overlayer thickness; the period
of the modulation is the same for both spins, whereas the amplitude and phase
are expected to be spin-dependent.

The quantum size effects in paramagnetic overlayers on a ferromagnetic sub-
strate have been investigated by several groups [7-15]. The systems studied most
are Cu overlayers on a Co(001) substrate and Ag overlayers on a Fe(001) substrate.

Ortega and Himpsel [8] have proposed that the quantum size effect ob-
served near and below the Fermi level are spin-polarized and primarily due to
minority-spin electrons. However, only a spin-polarized experiment could establish
this unambiguously. The suggestion of Ortega and Himpsel has been confirmed in-
dependently by Garrison et al. [10] and by Carbone et al. [11] who performed
spin-polarized photoemission studies of Cu films on Co(001).

3. Interlayer exchange coupling
3.1. General considerations

In metallic systems, exchange interactions are propagated by itinerant elec-
trons and can thus be transmitted over rather long distances. It follows that ex-
change interactions can couple ferromagnetic layers through a non-magnetic metal-
lic spacer layer. Although the possibility of exchange coupling across a non-magnetic
spacer has been considered for a long time, it was only clearly identified in 1986
in rare-earth multilayers by Salamon et al. [16] and by Majkrzak et al. [17], and in
Fe/Cr/Fe films by Griinberg et al. [18]. In 1990, Parkin et al. [19] observed periodic
oscillations versus spacer thickness of the interlayer exchange coupling (IEC) in
Co/Ru and Co/Cr multilayers. This discovery gave a decisive impetus to this field
and several hundreds of papers on this subject have been published since then. In
a systematic study, Parkin showed that oscillatory exchange coupling occurs with
almost all transition or noble metals as a spacer material [20].

In most cases, the exchange coupling energy per unit area between two ferro-
magnetic films F4 and Fp separated by a non-magnetic spacer can be expressed as

EA,B = J cos 9, (14)

where 0 is the angle between the magnetizations in Fy and Fg. With the con-
vention used in Eq. (14), the positive (resp. negative) sign of J corresponds to
an antiferromagnetic (resp. ferromagnetic) coupling?. The typical order of magni-
tude of IEC ranges between 0.1 and 1 erg cm~2 for a spacer thickness of 5 AL
(1 erg em™2 =1 mJ m~?).

Although in most cases, the coupling is of the form (14), which leads to
either ferro- or antiferromagnetic coupling, Riihrig et al. [21] found that for spacer
thicknesses around a change of sign of J, the interlayer coupling in Fe/Cr/Fe films

{Note that different conventions for the sign and/or dimension of the coupling constant J are
frequently found in the literature.
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leads to a 90°-angle between the magnetizations of the Fe layers. This effect (called

biquadratic coupling) can be accounted for by adding to Eq. (14) a term B cos? 4,

with B > 0. The same effect has been also observed in other systems. .
A great variety of experimental methods have been used to investigate IEC:

® The most widely used method consists in measuring magnetization [20, 22],
magneto-optical Kerr effect (MOKE) [23,24] or magnetoresistance [19] loops.
With this method, however, only antiferromagnetic coupling can be mea-
sured in general. In order to be able to measure also ferromagnetic coupling,
one has to use a special sample design [22,24]. A particular advantage of
MOKE is that it is easily implemented in vacuo and that it can be used
to probe locally the coupling in samples with a wedge or staircase spacer
layer (produced by moving a shutter during evaporation). This procedure
allows a very fine investigation of the spacer thickness dependence of the
coupling, and avoids problems due to irreproducibily in sample preparation
conditions; :

e RF techniques such as ferromagnetic resonance (FMR) [25] and Brillouin
light scattering (BLS) [25-27] have been also used;

o Neutron scattering [28-29] has been used to evidence antiferromagnetic cou-
pling in multilayers;

e A spectacular technique to evidence IEC oscillations consists in imaging the
magnetic domains in a system with a wedge-shaped spacer by
means of a scanning electron microscope with a spin-polarization analysis

(SEMPA) [30-32].

From the theoretical point of view, an intense activity has been devoted to
the problem of IEC. The most direct way to study theoretically the IEC is to com-
pute the total energy difference between the ferromagnetic and antiferromagnetic
configurations [33—-37]. Although this is in principle straightforward, this approach
turns out to be quite difficult. This is due in particular to the fact that IEC en-
ergies are of the order of 10~* to 10~3 eV per unit cell, i.e., considerably smaller
than the total energy of the system. Indeed, early attempts of computing IEC from
first-principles yielded coupling strengths much larger than the experimental ones.
However, recent calculations are now in much better agreement with experimental
results.

In parallel with first-principle calculations, various models have been pro-
posed to study the IEC:

e the Ruderman-Kittel-Kasuya—Yoshida (RKKY) model in which the mag-
netic layers are described as arrays of localized spins interacting with con-
duction electrons by a contact exchange potential [38-42];

e the free-electron model [43-46];

e the hole confinement model, which is essentially a tight-binding model with
spin-dependent potential steps [47-48];

e the Anderson (sd-mixing) model [49-50].
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Recently, it has been shown that all the above models can be unified into a more
general approach in which the IEC is interpreted as a quantum size effect and
described in terms of (spin-dependent) reflection coefficients of electrons at the
interfaces between the non-magnetic spacer and the ferromagnetic layers [4,5,51].
This approach will be presented in the following section.

Note that, in the following, only bilinear IEC such as expressed by Eq. (14)
will be considered. Although the quantum size effect does give rise to biquadratic
and higher-order terms, their contribution is too small to explain the biquadratic
coupling observed experimentally [21]. Several non-intrinsic mechanisms have been
proposed to explain the biquadratic coupling [52].

3.2. Interpretation of inlerlayer exchange coupling as a quanium size effect

In this section, the interpretation of IEC as a quantum size effect, and the
description in terms of spin-dependent reflection at the spacer-ferromagnet inter-
faces will be presented. For a comprehensive discussion, however, the reader is
referred to the original publications [4-5].

Let us consider a paramagnetic spacer layer sandwiched between two ferro-
magnetic films F4 and Fp. The latter constitute potential barriers for the electrons
travelling through the spacer layer, so that partial or complete confinement of elec- -
trons in the spacer takes place. Thus, as discussed above, the density of states of
the system is modified by the quantum size effect. This in turn leads to a change in
the total energy of the system. The reflection coeflicients at the interfaces between
the paramagnetic spacer and the ferromagnetic layers are spin dependent, so that
the quantum size effect (and, hence, the total energy of the system) depends on
the relative alignment of the magnetizations in F4 and Fp. This is the physical
origin of the IEC. Since the quantum size effect results from quantum interferences
in the spacer, one can easily understand that, upon variation of spacer thickness,
situations of constructive and destructive interferences will alternate periodically,
resulting into an oscillatory behavior of the IEC.

Let An(e) be the total change of density of states (per unit area) of the
system, resulting from the quantum size effect in the spacer layer. The associated
change in the total energy (per unit area) of the system can be expressed as

AE = / " (e — ) An(e)de. (15)

In the above equation, the second term ensures comnservation of the total num-
ber of electrons in the system; this prescription corresponds to working in the
grand-canonical ensemble, i.e., with a fixed chemical potential ep. The IEC con-
stant J can be obtained from Ey — Exr = 2J, where the subscripts F and AT
correspond respectively to the ferromagnetic and antiferromagnetic configurations
of the magnetizations in F4 and Fg. Thus

Elf‘ - EAF = LEF (E — EF) [Anp(e:) . AnAp(e)] de. (16)

For simplicity, the approximation corresponding to the weak confinement case is
made. An exact treatment of the general case is given in Refs. [4-5]. For the weak
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- confinement case, by using Eq. (9) and performing an integration by parts on the
energy, one obtains

1 T A A SR ]
Ep — EpF %—ZW—:SIm/d k”/ [(rArB—i-rArB)
—00

— (rLrllg + rjr;)] e!(kX=E1)D g (17

In the above equation, the first term correspond to the ferromagnetic configura-
tion and the second term to the antiferromagnetic one; the integration on ky is
performed over the first two-dimensional Brillouin zone. The indices A and B la-
bel the reflection coeflicients on the ferromagnetic layers F4 and Fp, respectively,
corresponding to an electron travelling through the spacer with an in-plane wave
vector ky and an energy €. Finally, this yields

1 °r ; -
- Br — Bar % ——Im / 4>k / ArpArgeFI=FD)D g, (18)
-0

The above expression for the IEC has a rather transparent physical interpretation.
First, as the integrations on ky over the first two-dimensional Brillouin zone and
on the energy up to the Fermilevel show, the IEC is a sum of contributions from all
occupied electronic states. The contribution of a given electronic state, of energy
and in-plane wave vector k|, consists of the product of three factors: the two factors
Ary and Arpg express the spin-asymmetry of the confinement due to F4 and Fg,
respectively, while the exponential factor l¥f=*¥1)D describes the propagation
through the spacer and is responsible for the interference (or quantum size) effect.
Thus, this approach establishes an explicit and direct link between oscillatory IEC
and quantum size effects such as observed in photoemission.

It should be emphasized that the dependence of the coupling on the nature
and thickness of the ferromagnetic layers is entirely described via the factors Ary
and Arg$. On the other hand, the dependence of the IEC on the spacer layer
thickness is determined only by the (bulk) band structure of the spacer material,
via the wave vectors kT and k7 (which are, of course, functions of ¢ and k).

In the limit of the large spacer thickness D, the exponential factor oscillates
rapidly with € and k|, which leads to some cancellation of the contributions to the
IEC due to the different electronic states. However, because the integration over
energy is abruptly stopped at er, states located at the Fermi level give predominant
contributions. A detailed analysis [4-5,41] shows that in fine, the only remaining
terms in the limit of the large spacer thickness D arise from the neighborhood

of states having in-plane wave vectors kﬁ’ such that the spanning vector of the

Fermi surface ¢ 7 = ki‘F — k1 is stationary with respect to &y for &y = kﬁ‘, and
the corresponding contribution oscillates with a wave vector equal to ¢¢5¥. This

§ Actually, the reflection coefficients on F, and Fpg, respectively, incorporate the effect of
interferences due to the whole half-spaces on each side of the spacerlayer, so that they also contain
the possible influence of layers (substrate, protective cap layer, or vacuum) located “behind” Fuq
and Fg.

T There may be several such stationary spanning vectors and, hence, several oscillatory com-
ponents; they are labelled by the index c.
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selection rule was first derived in the context of the RKKY model [41]. Examples
will be given in the next section.

3.3. Theoretical predictions and comparison with experiment

3.8.1. Oscillations versus spacer layer thickness

The easiest comparison between the above theory and the experimental ob-
servations concerns the periods of oscillation of the IEC with respect to a spacer
layer thickness. As already mentioned, the theory predicts that the oscillation pe-
riods depend only on the bulk band structure of the spacer material. Thus noble
metals constitute very good candidates for an experimental test of the oscillation
periods predicted by the theory; there are several reasons for this choice:

¢ Fermi surfaces of noble metals are known very accurately from de Haas-van
Alphen and cyclotron resonance experiments [53];

e Since only the sp band intersects the Fermi level, the Fermi surface is rather
simple, and does not depart very much from a free-electron Fermi sphere;

o Samples of a very good quality with noble metals as a spaéer layer could be
prepared.

Figure 2 shows a cross-section of the Fermi surface of Cu, indicating the
stationary spanning vectors for the (001), (111), and (110) crystalline orienta-
tions [41]; the Fermi surfaces of Ag and Au are qualitatively similar. For the (111)
orientation, a single (long) period is predicted; for the (001) orientation, both a
long period and a short period are predicted; for the (110) orientation, four dif-
ferent periods are predicted (only one stationary spanning vector is seen in Fig. 2,
the three others being located in other cross-sections of the Fermi surface). These

i '(ni)

(002)

Fig. 2. Cross-section of the Fermi surface of Cu, parallel to a (110) section. The solid
points give the vectors of the reciprocal lattice. The (bulk) first Brillouin zone is indicated
by the dashed lines. The horizontal, oblique, and vertical bold arrows, respectively, are
the stationary spanning vectors determining the periods of IEC oscillations versus spacer
thickness, for the (001), (111) and (110) orientations (from Ref. [41]).
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theoretical predictions have been confirmed successfully by numerous experimen-
tal observations. In particular, the coexistence of a long and a short period for the
(001) orientation has been confirmed for Cu [54], Ag [55], and Au [31, 56].

In a further attempt to test the theoretical predictions for the periods of os-
cillatory coupling, several groups [57-59] have undertaken to modify in a controlled
manner the size of the Fermi surface (and hence, the period of the coupling) by
alloying the spacer noble metal (Cu) with a metal of lower valence (Ni); in both
cases, the change in oscillation period due to alloying has been found in good
agreement with the expected change in the Fermi surface.

While a test of the theory with respect to oscillation periods is rather easy be-
cause it only requires an inspection of the Fermi surface, a quantitative discussion
of the magnitude and phase of the IEC is a more difficult task, because it re-
quires the calculation of reflection coefficients at the spacer/ferromagnet interface.
Such calculations, based upon the theory outlined above, have been performed
by Lee and Chang [60] and by Stiles [61] for various systems. Their results are
in rather good agreement, both with total energy ab initio calculations and with
experiments. ;

In contrast to the siiccéss obtained with noble metal spacer layers, the sit-
uation for transition metal spacer layers is much less satisfactory. Stiles [51] has
performed systematic calculations of the possible oscillation periods for transition
metal spacers. However, due to the fact that the d-bands intersect the Fermi level,
the Fermi surfaces are very complicated and consist of several sheets. As a con-
sequence, so many possible periods are predicted that a reliable comparison with
experimental data is problematic.

3.3.2. Variation versus ferromagnetl and overlayer thicknesses

As already mentioned, the influence of the IEC on the ferromagnetic layer
thickness is contained in the reflection coefficients Ar4 and Arg. If the ferromag-
netic layers are of a finite thickness, reflections usually may take place at the two
interfaces bounding the ferromagnetic layers, giving rise to interferences [62], and
hence, to oscillations of the IEC versus ferromagnetic layers thickness. A more
detailled discussion of this effect is given in Refs. [5,62]. This behavior was found
previously from calculations based upon a free-electron model [43], and confirmed
by first-principle calculations for the Co/Cu(001) system [36]. On the experimen-
tal point of view, it was confirmed by Bloemen et al. [63] in Co/Cu/Co(001) and
by Okuno and Inomata [64] in Fe/Cr/Fe(001). The amplitude of the oscillations
of the IEC versus ferromagnetic layers thickness is generally much smaller than
the oscillations versus spacer thickness, and does not give rise to changes of sign
of the IEC.

A more (a priori) surprising behavior is the dependence of the IEC on the
thickness of the protective overlayer. From a na‘ive point of view, one might think
that layers external to the basic ferromagnet/spacer/ferromagnet sandwich should
not influence the interaction between the two ferromagnetic layers. This view is
incorrect, in particular when the system is covered by an ultrathin protective over-
layer. In this case, the electrons are able to reach the vacuum barrier, which is a
perfectly reflecting one, so that strong confinement and interference effects take
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place in the overlayer, which lead to a weak but sizeable oscillatory variation of
the IEC as a function of the overlayer thickness. This effect, which follows directly
from the quantum interference (or quantum size effect) mechanism, has been pro-
posed and experimentally confirmed independently by de Vries et al. [65] for the
Co/Cu/Co(001) system with a Cu(001) overlayer, by Okuno and Inomata [66] for
the Fe/ Au/Fe(001) system with a Au(001) overlayer, and by Bounouh et al. [67]
for the Co/Au/Co(0001) with a Au(111) overlayer. In both cases, the observed
period(s) for the oscillations versus overlayer thickness were found to be in good
agreement with the theoretically predicted ones.

4. Magneto-optical effects in ultrathin films

The optical properties of ferromagnetic materials depend on the relative
orientations of the magnetization and of the light polarization. These effects are
known as magneto-optical effects. Here, only the simplest of these effects (the
polar magneto-optical Kerr effect) will be discussed. When a ferromagnetic (or
ferrimagnetic) sample, with its magnetization aligned perpendicular to its surface,
is illuminated at (quasi) normal incidence with linearly polarized light, one usually
observes that the polarization of the reflected light has acquired an ellipticity ex
(called the Kerr ellipticity) and that the large axis of the polarization ellipse is
at a certain angle 0k (called the Kerr rotation) with respect to the polarization
direction of the incident light. If the magnetization is reversed, then the Kerr
rotation and ellipticity are also reversed. When the sample is transparent, a similar
effect can be also observed on the transmitted light, and this is known as the
magneto-optical Faraday effect. Another effect, which is closely related to the polar
Kerr effect and to the Faraday effect, is the optical magnetic circular dichroism,
i.e., the difference in absorption between left and right circularly polarized light.

4.1. Kerr effect and conductivity tensor

On the macroscopic level, the polar magneto-optical Kerr effect is described
in terms of the optical conductivity tensor o(w) of the magnetic material. The
magneto-optical Kerr effect arises from the presence of a non-zero off-diagonal
maftrix element, a’zy(w); this may be understood rather easily from the following
argument. Let us consider an incident light wave with the electric field linearly
polarized along the z axis. The current induced in the ferromagnetic material by
the electric field of the light comprises two components: one parallel to the z axis
and proportional to the diagonal matrix element o;;(w), and the other parallel
to the y axis and proportional to the off-diagonal matrix element ozy(w). The
reflected light is the light radiated by the induced current; thus, its polarization
plane is rotated by a small angle, of the order of |0y (w)/0ze(w)|, with respect to
that of the incident wave.

The Kerr rotation angle fx and the Kerr ellipticity ek may be combined to
form the complex Kerr angle

¢k = Ok +iex. (19)
For a film of thickness D on a substrate, the Kerr rotation angle is [68]
105y 47D
¢ = —L——, (20)

OSpp A
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where 073, is the optical conductivity of the substrate, and A = 27c/w the wave-
length of the light in vacuum. This expression is valid when D < \.

4-2. Microscopic mechanism of magneto-optical Kerr effect in bulk ferromagnets

Before addressing the question of the magneto-optical effects in ultrathin
films, it is useful to present the mechanism of the Kerr effect for the case of bulk
ferromagnets.

The expression of the conductivity tensor in terms of the microscopic elec-
tronic structure may be obtained from the Fermi golden rule [69,70], or by using
the Kubo-Greenwood formalism [71]. The dissipative component of o,y (w) (for
w > 0) is then given as.[69]

me?
0oy (W) = Tonin ;f(e,-)-[l = f(es)]
x (16l o- 19)” = (il 24 1] 8w — w), (21)

where pi = py +ipy, f(€) is the Fermi-Dirac function, £ the total volume, and
hw fi = Ef —E;.

The above expression is interpreted straightforwardly in terms of the ab-
sorption of a photon by an electron making a transition between an occupied
initial state |¢) and an unoccupied final state |f); the factor §(wys; — w) expresses
the condition of energy conservation. The matrix elements (i| p— |f) and (¢| p4 | f)
correspond to dipolar electric transitions, for right and left circularly polarized
light, respectively. Clearly, ol (w) is proportional to the difference of absorption
probability for right and left circularly polarized light. This illustrates the deep
connection between the Kerr effect and the circular dichroism. The correspond-
ing dispersive component, o7, (w) is obtained by using the Kramers-Kronig rela-
tion [72].

‘ In a bulk material, due to a three-dimensional translational invariance, the
matrix elements vanish unless the initial state |{) and final state |f) of the optical

transition have the same wave vector k (as usually, the much smaller wave vector

K of the photon is neglected), i.e., only vertical optical transitions are allowed.

In addition, the selection rules for electric dipolar transitions must be satis-
fied, i.e.,

Al = +1, - (22)

Amy = £1. (23)
The first selection rule implies that only transitions between s and p levels, or
between p and d levels (for transition metals) are allowed. For the second selection
rule, the transitions with Am; = 41 and Am; = —1 correspond to left and right
circularly polarized light, respectively. As an example, let us consider a transi-
tion between a doubly degenerate d, 4, level (I = 2, m; = £1) and a p, level
(I =1, m; = 0). The majority and minority spin d levels, in the ferromagnet, are
separated by the exchange spitting Aex. Due to spin—orbit coupling, the orbital
degeneracy of the dy, . levels is lifted, and the latter are splitted into d(s4iy).
(having m; = +1) and d(g_iy), (having m; = —1) levels. For spin up (i.e., major-
ity spin), the level with m; = +1 has a higher energy, whereas for spin down (i.e.,
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Fig. 3. Sketch of the energy levels in a bulk ferromagnet, showing the electric dipo-
lar optical transitions for left and right circularly polarized light. The corresponding
absorption spectra versus photon energy hv are shown on the right; (from Ref. [76]).

minority spin), the converse holds. This is sketched in Fig. 3. From this picture, it
is clear that, in a bulk ferromagnet, the Kerr effect arises from the simultaneous
occurrence of exchange splitting and spin—-orbit coupling.

4.8. Magneto-optical properties of ultrathin films:
the effect of electron confinement

Recently, it has been discovered by Suzuki et al. [68-73] and Geerts et al. [74]
that the magneto-optical effects in ultrathin Fe films are modified with respect to
those of bulk Fe (or thick Fe films), due to their modified electronic structure. As
will be discussed below, these observations can be interpreted as a quantum size
effect due to electron confinement in the Fe film.

A very interesting observation has been done by Mégy et al. [75], who re-
ported an oscillatory behavior of the Kerr rotation versus Au overlayer thickness
in the Au/Co/Au(111) system. The latter effect is attributed to Kerr effect in the
Au overlayer, due to a spin-dependent quantum size effect [75,76].

As was discussed above, the effect of electron confinement in an ultrathin
film is to modulate the spectral density corresponding to a given electronic state
by a periodic function of the thickness. The matrix elements for the ultrathin film
case (i|p4 |f) are thus modified with respect to those corresponding to the bulk
case, (¢ |px| f),. Clearly, this change must be of the form

(i o] £ ~ il s 1ol 9(Da (), (24)

where g(i) and g(f) are the relative changes of the spectral weight due to the
confinement for the initial and final states, respectively. One can then show that
o!ly(w) comprises, in addition to the bulk contribution, an oscillatory term due to
quantum confinement in the initial and/or final states of the transition. As in the
problem of IEC, oscillatory contributions with different wave vectors tend to cancel
each other, except for some specific points in the Brillouin zone [76]. However, the
quantitative discussion of the periods of oscillations of the Kerr effect is much
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more difficult than for the IEC, and a quantitative comparison between theory
and experiment has not been obtained yet.

5. Conclusion

As discussed throughout this chapter, the quantum size effects arising from
the confinement of electrons in magnetic ultrathin films manifest themselves in a
number of physical properties.

The method of choice for a quantitative investigation of quantum confine-
ment in metals in undoubtedly photoemission; this technique bears unique features
that allow selectivity in wave vector, energy, and possibly, spin. Photoemission ex-
periments in overlayers can be analyzed in terms of simple, physically appealing,
concepts such as reflection coefficients and bulk band structures.

The oscillatory interlayer exchange coupling has been widely investigated
experimentally. From the theoretical point of view, it has been successfully inter-
preted in terms of quantum size effects, and numerous theoretical predictions have
been confirmed experimentally.

The magneto-optical effects in ultrathin films are also sensitive to the quan-
tum size effects. In spite of some recent efforts to explain the observed phenomena,
further investigations (both experimental and theoretical) are required in order to
_ confirm the explanations that have been proposed.
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