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The dynamic susceptibility of the system with antiferromagnetic cou-
pling between layers is investigated within the framework of the multiband
model using the equation of motion with random phase approximation. Cal-
culations are performed in the mixed Bloch-Wannier representation and a
general form for χ is found. The susceptibility can be written in terms of
two-particle Green's functions expressed in the local coordinate system with
the z axis aligned along the local magnetization. The expression depends on
an angle between the magnetization direction in a given layer and the crys-
tal axis. Preliminary numerical calculations are performed for two systems:
ultrathin Cr film and Fe/Cr multilayer structure. Imaginary part of the sus-
ceptibility corresponding to different layers is calculated and spin waves are
discussed.

PACS numbers: 75.10.Lp, 75.30.Cr, 75.30.Ds, 75.50.Ee

1. Introduction

Recently, systems with antiferromagnetic coupling between layers have been
widely investigated experimentally and theoretically. Especially, films and super-
lattices consisting of Fe and Cr, as well as Fe and transition nonmagnetic or noble
metals have been studied [1-3]. The oscillations of the exchange coupling are ob-
served in such materials. Changes in the magnetic coupling strongly influence spin
waves and the temperature dependence of the magnetization [4-6]. Therefore, an
investigation of the spin-wave modes characteristic of systems with antiferromag-
netic coupling between layers seems to be very important. So far, the approach
based on phenomenological or Heisenberg models was used [7-11]. However, in
the case of transition metals calculations performed within the framework of the
itinerant electron model are the most required ones.
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In the band model spin waves for thin films and semi-infinite systems with
ferromagnetic coupling between layers have been mainly investigated [12-15]. The
dynamic susceptibility method within the random phase approximation (RPA) has
been used. Calculations of the dynamic susceptibility performed in the Bloch—Wan-
nier representation for various values of the wave vector and various values of
energy allow one to determine spin-wave amplitudes, dispersion relations, local
density of magnon states, temperature dependence of the magnetization [13-15].
Elaboration of the theory of dynamic susceptibility for nonuniform and finite sys-
tems with antiferromagnetic coupling seems to be a natural and significant exten-
sion of the existing approach. It would allow one to investigate spin waves in films
and multilayered structures, in particular, in systems like Fe/Cr with antiferro
magnetic or ferromagnetic type of the coupling. As far as uniform bulk materials
are concerned, the theory of dynamic susceptibility in antiferromagnets within
the framework of the multiband tight-binding model was worked out by Cade
and Young [16], whereas the appropriate approach for ferromagnets was given by
Cooke et al. [17]. Spin waves were investigated and remarkable consistency with
experimental results was obtained. In nonuniform stuctures calculations of the
static susceptibility based on the simple one-band model were performed [18].

The aim of the paper is to present the band approach to the theory of
the dynamic susceptibility for systems in which the magnetization direction can
change along the axis perpendicular to the surface and interfaces. As a special case
films with antiferromagnetic coupling between layers are considered. Preliminary
numerical calculations are performed. Ultrathin Cr films and Fe/Cr stuctures are
simulated. The results obtained for the transverse susceptibility and spin waves
are presented.

2. The Hamiltonian and one-electron properties

Calculations are based on the multiband Hamiltonian taken in the following
form:

dv jmσ denotes an annihilation operator of an electron with spin σ and the orbital
index m at the lattice point vi, where v corresponds to the layer index and j is the
radius vector in the film plane. Ηvv'mm',(jj) denote two-center hopping integrals. Εv
is the one-electron potential in the layer v and elements of matrix U describe the
effective intraatomic interactions between electrons. The orbital representation is
used for U.

We consider a system which consists of n ferromagnetic layers, however, the
direction of the magnetization in the layer v is characterized by an angle Vv with
respect to the z axis, common to the whole system. The angle Vv may strongly
depend on the layer index. In the case of simple antiferromagnetic coupling between



where Εαh denotes the one-electron Hartree—Fock energy.
The mean magnetization in the layer v defined as
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layers, Vv is equal to Ο or π. In a general case, dependence of angle z9v on layer
index can be more complex.

The magnetocrystalline anisotropy appears to be a very difficult and sub-
tle problem in the band model approach [19]. It is not discussed in the paper.
Hamiltonian (1) which constitutes the base of the considerations is invariant un-
der rotations about the same angle with respect to any axis for the whole system.
Therefore, the z axis of the crystal coordinate system can be taken in the direc-
tion perpendicular to the surface of the film. The choice seems to be the most
appropriate for Fe/Cr multilayers, where the magnetization perpendicular to the
surface can be expected. In other cases a rotation about an angle π/2 can be in-
troduced to align the z axis in the film plane. Such a rotation does not change the
Hamiltonian.

To study structures with antiferromagnetic coupling between layers, the local
coordinate system is introduced. In the layer v the z' axis of the new coordinate
system is aligned along the local direction of quantization. It corresponds to the
rotation about an angle z9v in the atomic sheet with index v. The rotation leads
to the following transformation of operators d vj mσ :

where = 1 for σ =^' and -1 for σ =1. Hopping terms in Hamiltonian (1)
expressed by means of new operators [c vj mσ depend on cos [(z9v — z9v )/2] and
sin [(z9v - z9v0/2] as well as on various spin indices σ, σ'. The Hamiltonian is
diagonalized in the Hartree—Fock (HF) approach with the use of the following
transformation:

Because of the translational symmetry in the plane of the film the Fourier transform
with twodimensional wave vector h parallel to the surface is introduced. In the
direction perpendicular to the surface more general transformation is used with
Τ σ corresponding to amplitudes of electrons which can be found numerically.
In the expression (3) N denotes the number of atoms in the plane.

The local density of states is calculated according to the formula

after using transformations (2) and (3) takes the following corm:

where fαh = (α+άhααh) denotes the Fermi—Dirac distribution function. For the
simple antiferromagnetic case (z9v = Ο or π) the magnetization calculated in the
crystal coordinate system is directly expressed by the magnetization in the local
system, however, with the sign dependent on the layer index.
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3. The dynamic susceptibility

The dynamic susceptibility of the system is expressed by means of the spin
• operators in the following way:

with

In the above expression σ is the Pauli matrix and Ψ(r , t) denotes the field operator

One-electron function φvjm(r) corresponds to the state localized at the lattice point
vi with orbital index m. Χσ is a spin function. Operators dv j mσ can be expressed
by means of the local operation Cvjmσ and then by ααh, which diagonalize the
Hamiltonian in the HF approach. It is convenient to introduce operators

where Fmm' (q) is the atomic form factor and q is the twodimensional vector par-
allel to the surface. The Fourier transform of the spin operator S, (q, t) can be then
expressed by means of S

σσ

'vq  ' . For example, in the case of a simple antiferromagnet
spin operator S„- (q, t) can be written in the form

In a general case all operation S' with various σ and σ' can be included.
To calculate the dynamic susceptibility the Green function defined as follows

is introduced

where θ(t) is a step function. The equation of motion for G μσσ' is found using
Hamiltonian (1) expressed by means of operation ααk and it is solved within the
RPA.

When the matrix X related to the Green function in the way

is introduced, the solution can be written in the form

where index M = mm'. In the above formula I denotes a unit matrix and Γ is
the non-enhanced susceptibility defined as follows:
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The elements of matrix V are related to elements of U according to expression

Formally, the stucture of the matrix Χ is similar to the one obtained in the case
of thin films with ferromagnetic coupling [20]. The main difference is that in the
case under consideration various spin indices are mixed and the summation over
σ appears in formula (14). The size of matrices is considerable. It depends on a
number of layers in the film, a number of orbitals taken as basis functions and also
on spin indices.

In the case of simple antiferromagnets the transverse and longitudinal parts
of the susceptibility as well as of matrix X are not coupled, therefore these parts
can be investigated separately. In such a case, the transverse dynamic susceptibility
can be written in the form

Matrices which appear in the 1ast formula for X are expressed in terms of appro-
priate elements of X. For example, elements of the matrix X—+ are equal to

The susceptibilities X+ , X-- and X++ take similar forms.
According to formula (18) it is easy to notice that in the case of the film

with ferromagnetic coupling between layers the obtained expression is reduced to

because angles 19v and 19 μ are equal to zero for all layers. Matrix expression for
X can be also simplified in this case. The results obtained for thin ferromagnetic
films are the same as in Ref. [20].

However, in a general case, when the angle υ varies from one layer to another
in a more complex way the obtained expressions are quite complicated. In such
a case because of a strong mixing the longitudinal and transverse components
cannot be calculated separately.

Tedious numerical calculations are necessary in order to find susceptibility
matrix X. First of all, one should find elements of Γ. Because of the size of the
matrix, the calculations are time-consuming even in the case of the structure with
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simple antiferromagnetic coupling between layers. To make calculations more ef-
fective one should introduce further simplifications. The approach to the problem
can be similar as in thin ferromagnetic films. Possible procedures are presented
and discussed in Ref. [20].

4. Numerical results
In this section some numerical results will be presented to illustrate the

theory elaborated in the previous sections. Calculations are preliminary. Cr and
Fe/Cr systems are simulated in a simple way.

There are some experimental evidences that the surface of Cr(001) is ordered
ferromagnetically [21]. Tight-binding and ab initio approaches to the ground state
of Cr(001) films show that the magnetic moments couple ferromagnetically within
the layers and antiferromagnetically with the moments at adjacent layers [22-24].
Such a type of the magnetic structure is assumed in the paper for the ground state
of Cr film.

The calculations are performed within the one-band model. In such a case in
all formulae presented in previous sections the orbital indices m can be dropped.
It should be pointed out that in the one-band approach the size of Γ and X is
considerably reduced.

The film of bcc stucture with the surface perpendicular to the [001] direction
is considered. The hopping of electrons between the nearest and the next nearest
neighbors is taken into account. Calculations are performed for the one effective
band, which corresponds to five d bands lumped together, therefore the Fermi
energy is calculated with the condition that the number of electrons per atom in
the middle layer is equal to 5.0. The integral U is assumed to be 0.5 eV and values
of E are shifted in such a way that the enhancement of the magnetic moment near
the surface could be obtained. Small shifts are also taken into account in other
layers. The hopping integral for the first neighbors is taken to be equal to 0.72 eV.
For the second neighbors it is correspondingly smaller. Calculations are performed
within the HF approximation. Terms of the form (cvj  σ Cv j — σ) non-diagonal in spin
indices, which appear in the HF potential are assumed to be equal to zero at the
starting point. However, all these terms are consequently taken into account in the
next iteration steps. In the problem under consideration the terms appear to be
relatively small.

The profile of the magnetization calculated for Cr film is presented in Fig. 1.
Due to the changes in the one-electron potential the strong enhancement of the
magnetic moment at the surface is obtained. Inside the film the moment is sub-
stantially lower, though similarly as in other approaches, it is still higher than
in the bulk material. The calculated density of states for the surface and central
layers is presented in Fig. 2. The curves in general resemble the ones calculated in
Ref. [23]. Peaks corresponding to surface states can be seen.

The real and imaginary parts of non-enhanced susceptibility Γ calculated for
the surface and central layers are presented in Fig. 3. A high peak which appears in
ImΓ11 is a result of the enhanced density of states at the surface. The shift of the
peak towards higher values of energy as compared to the main peak in the central
plane can be related to the strong enhancement of the surface magnetization. Real
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part of Γ calculated for the surface layer is also correspondingly higher than for
the central plane.

Next, the calculations are performed for the enhanced transverse suscepti-
bility X. Elements of matrices X -- and X++ are small as compared to X — + and
X+_ . Therefore it seems that in the case under consideration only matrices χ— +
and x+ — should be discussed [9]. Imaginary part of X — + exhibits the pronounced
peak in the first layer (Fig. 4a). On the other hand, according to Fig. 4b well
defined peaks can be seen in ImX+ — for the second and fourth layers. Peaks which
appear at low energies are relatively low and broad, whereas these corresponding
to higher values are well pronounced. In fact, in the scale of Fig. 4a it is difficult to
observe the small peak at lower values of energy. One can expect that the calcu-
lated peaks are related to spin-wave modes, however, the low-lying branches seem
to be damped. These lowest modes are optical ones and are very strongly localized
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near the surface. Wave functions corresponding to the modes characteristic of the
system under consideration are depicted in Fig. 5. The total number of the modes
is equal to 2n. The lowest modes presented in Fig. 5a have strongly enhanced
amplitudes in the first layer and can be related to the first sublattice (with the
magnetization parallel to the z axis). On the other hand, low-lying modes pre-
sented in Fig. 5b with amplitudes strongly enhanced at the second layer can be
related to the second sublattice (with the magnetization aligned antiparallel to the
z axis). The fact that the low lying modes are strongly localized near the surface
is a result of the boundary conditions with the magnetic moment enhanced in the
surface layer. Due to the boundary conditions, layers with different magnetization
directions are not fully equivalent.
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As the second example Fe/Cr stucture is simulated with three Fe 1ayers
separated by three and four atomic sheets of Cr. The integral U equal to 0.8 eV is
taken for Fe in consistency with Ref. [25]. The shift of the one-electron potential
E in Cr 1ayers as compared to Fe ones is about 0.45 eV.

The ground state of Fe/Cr systems appears to be a very difficult problem.
One-electron properties were investigated in many papers with the use of model
and ab initio approaches [26-29]. Investigations show that the coupling between
Fe layer and the adjacent Cr plane is antiferromagnetic. Between two Fe layers
separated by Cr spacer the coupling can be ferromagnetic or antiferromagnetic
in dependence on a thickness of the spacer. A b initio calculations show that for
an odd number of Cr layers ferromagnetic coupling is more favorable, whereas
for an even number of Cr layers the antiferromagnetic one takes place. In this
last case the spin density wave can form in the spacer [29]. The ground-state
problem is not discussed in the present paper. At the start the state consistent
with the results of Ref. [29] is taken and the ferromagnetic ordering of two Fe
layers separated by 3 planes of Cr is assumed. The profile of the magnetization
calculated in a self-consistent way is depicted in Fig. 6. Features very characteristic
of the distribution of the magnetization in Fe/Cr system can be reproduced in the
present approach. The magnetization of Fe is slightly suppressed for 1ayers which
are in direct contact with Cr and it is enhanced in the central Fe plane.

Dynamic susceptibility x = 1/2 (X — + + χ+— ) calculated for the system under
consideration is presented in Fig. 7. The curves correspond to Imχ obtained for
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surface and interface Fe layers. One can see low-energy peaks which are related to
spin waves. The very high peak found for the surface plane directly shows that the
mode strongly localized near the surface is obtained. Wave functions of the two
spin-wave branches with the lowest energies are depicted in Fig. 8. Amplitudes
of the modes are strongly enhanced in the surface and they are practically equal
to zero in the central part of the film, namely in the Cr layers. The first mode
propagates with the same phase in both Fe sublayers, therefore, it is the acoustic
mode. The second mode appears to be out-of-phase optical. Energies of the spin
waves correspond to the zero of the determinant. Values calculated for these two
modes with q = π/8a(1,0), where a is the lattice constant, are close to each
other and are equal to 13.1 meV and 14.4 meV for acoustic and optical branches,
respectively.

Calculations are also performed for 3Fe/4Cr/3Fe system with antiferromag-
netic coupling between Fe layers. In this case the optical branch with the lowest
energy is found, whereas the acoustic mode corresponds to the higher value. Pre-
liminary calculations show that for q = π/8α(1,0) the difference in energy between
the two low-lying modes in the antiferromagnetic case is greater than in the fer-
romagnetic one. It could suggest that the absolute value of the magnetic coupling
is higher in the system with four-layer spacer. Such a conclusion seems to be con-
sistent with results of ab initio calculations [29] as well as obtained in Ref. [30].
However, it should be pointed out that to obtain reliable values of the coupling,
the high accuracy numerical calculations for q = 0 must be performed [6].
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5. Summary and discussion
The band model approach to the problem of the dynamic susceptibility in

thin films with antiferromagnetic coupling between layers is elaborated in the pa-
per. It can be applied to any system in which the direction of the magnetization
changes along the axis perpendicular to the surface. In particular, it can be used
to bilayers or multilayers with antiferromagnetic coupling. Spin waves character-
istic of such systems can be investigated, amplitudes and energies of the modes
can be determined. Within the framework of the proposed approach it is possible
to investigate conditions under which the interface modes, already found in the
Heisenberg model [7] can appear. The difference in energy calculated for two lowest
spin-wave modes with q = 0, namely the in-phase and out-of-phase ones, corre-
sponds to the magnetic coupling between sublayers separated by non-magnetic
spacer [6]. Therefore, the presented approach allows one to estimate the coupling
in the dependence on the thickness of the spacer for systems in which oscillations
take place.

Two simple examples of application of the theory are given. In general, the re-
sults are consistent with the ones which can be expected on the basis of the Heisen-
berg model [9, 31]. However, calculations performed for ultrathin films within the
framework of the simple one-band model show that spin waves strongly localized
near the surface of Cr can be damped.

It should be emphasized that numerical calculations presented in the pa-
per are preliminary and are performed within the framework of the one-band
model. The extension to the multiband model is simple, though calculations can be
time-consuming. Such calculations have been already performed for Ni/Ag/Ni sys-
tems with antiferromagnetic coupling between Ni sublayers across the Ag spacer.
The weakly localized near the surfaces out-of-phase and in-phase modes with close
values of energy were found. The dispersion relation was determined. The detailed
results will be published in a separate paper.
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