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We represent here some results for a model of migrating and nonmigrat-
ing ellipsoidal molecules dispersed in a cubic lattice, describing: the orienta-
tional ordering in nematícs, the possibility of a biaxial ordered liquid state,
the orientational ordering in solid hydrogen (ortho-ΠI2 or ραrα-D2) or the orí-
entatíonal glassy structure (the "higher rank" glass state). Through this kind
of molecular ensemble (in the case of the system of ellipsoidal and spheri-
cal molecules) it is also possible to study the orientational and positional
orderings in binary mixtures and to obtain the so-called plastic state.

PACS numbers: 05.50.+q, 64.60.Cn, 64.60.My, 64.70.Md

1. Introduction
A system consisting of anísotropíc molecules exhibits two kinds of long-range

ordering: long-range ordering of the centres of mass of the molecules or positional
ordering and long-range ordering of the orientations of the molecules or orienta-
tional ordering [1-6]. When this system "melts" into an isotropic liquid usually
both kinds of ordering disappear at the same temperature. Alternatively, it is
possible that one of -two ordering types survives until a transition temperature is
reached. In case when it is the long-range orientational ordering which survives,
we have a liquid crystal, e.g., a nematíc or another anisotropic system (without
positional ordering) as the solid hydrogen [7]. Another example is plastic crys-
tal or plastic state, which differs from liquid crystals in that the first ordering
mode which reaches zero is the orientational one, i.e., the centres of mass of the
molecules still form a regular crystal lattice or sublattíce, while their orientations
display some degree of disorder [8, 9].

The ordering phenomena in liquid crystals have their features owing to the
variety of the symmetries of the different phases. These features complicate theo-
retical considerations and numetícal simulations, imposing restrictions on methods
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which are of proved validity in other cases. However, during these two 1ast decades,
instead of the computer calculations of the "mean-field" type (which neglect angu-
lar correlations between neighbouring molecules, certainly important at the actual
physical densities and particularly near the transition point), a lot of work is done
using models where the shape of molecules is represented by a hard body and the
system of hard bodies is seen as one of the simplest idealizations of a molecular
system [10-12]. Therefore, the simplest way to include the short-range molecular
correlations (translational — cucial in fluid phases, and orientational — impor-
tant in plastic crystals), coming from the repulsions of molecular cores, is offered by
these hard-core systems. A review of results obtained for hard convex molecules is
presented in [11]. Some results concerning a twodimensional system of non-convex
molecules (hard cyclic pentamers) are given in [13], where the singlet distribution
function studied in detail, reveals a considerable coupling between translational
and rotational molecular motions.

In spite of very simple interactions, e.g., infinite when any two bodies (mole-
cules) overlap and zero otherwise, hard body systems are analytically intractable
and most of the nontrivial results concerning their thermodynamic properties come
from computer simulations. In particular, the simulations demonstrated that hard
body systems exhibit melting transition and may form liquid crystalline phases
when the body is highly non-spherical or plastic phases when the body is glob-
ular. By a proper choice of the shape of the body, one can model many of the
existing thermodynamic phases in nature (as, e.g., monodisperse polystyrene la-
tex by rigid spheres, tobacco mosaic vius by rigid rods, thin plate of kaolinite
by rigid platelets, DNA, polymers by semiflexible chains, amphiphilic bilayer by
semiflexible surfaces, etc.) (see Refs. [14-16] and references therein). Following the
original work performed using models with purely steric interactions [10-12], there
has been a growing interest in computer simulations of liquid-crystalline systems
using models with "soft" potentials [12], where the various single-site anisotropic
forms available continue to offer a productive route in studying order in liquids,
as, e.g., the Gay-Berne potential (see [17] and references therein).

In spite of this great progress, for the reason of the simplicity, experimental-
ists often continue to interpret the results of their investigations in terms of the
mean-field approximation [1]. The Landau-de Gennes theory as a phenomenolog-
ical theory, where the order parameters are introduced without any reference to
molecular properties, corresponds to the mean-field approximation. Prediction of
this theory based on such macroscopic.order parameters are in this sense universal.
However, order parameters are often also constructed in relation to specific molecu-
lar models. They are called microscopic and by definition contain more information
than just the symmetry of the phase. (When the molecules can be approximately
taken as rigid, i.e., rigid rods, it is possible to find a connection between the
macroscopic tensors of order parameter, defined through the susceptibility or the
dielectric constant, to the microscopic quantities.) Therefore, different models are
proposed to study the behaviour of orientational ordering [1-3].

Instead of analytical models with anisotropic shapes of molecules, different
from ellipsoidal one, or numerical models with anisotropic interaction potentials,
in our model the hard molecules have either a symmetrical ellipsoidal configu-
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ration or an asymmetrical ellipsoidal one and they are confined to the sites of a
cubic lattice. The other sites are taken either empty [4,18] or filled by spherical
molecules [5]. These molecules have a continuous distribution of orientations in
the space and there is no external (electric or magnetic) field. Also, this model
in the case of very long symmetrical ellipsoidal molecules and in presence of an
isotropic interaction among them, related to the orientational ordering, is equiva-
lent to the lattice model of rod (cylindrical) molecules. In our approach, except the
Landau—de Gennes expansion in Sec. 2.2.1, we can establish some relations among
the interaction constants and relate the "shape" of ordering to the parameters
of the model, particularly to the microscopic shape of the ellipsoidal molecules.
Besides the orientational ordering in nematics studied and before [3], the new
achievements in this work are the possibility of obtaining a biaxial ordered liquid
state in the case of the system of ellipsoids, which are not axially symmetric; the
orientational glassy structure and a simple explanation of orientational ordering in
solid hydrogen (ortho-Η 2 or para-D 2) and, also, the presence of an ordered (uniax-
ial) phase of a disc-like (oblate) type when the temperature and the concentration
are decreased in the system of nonmigrating ellipsoids.

2. The lattice model of migrating molecules
2.1. The uniaxial phase

2.1.1. The lattice of ellipsoidal molecules

Consider the system of axially symmetric ellipsoids dispersed on a cubic lat-
tice, occupying all lattice points. The interactions are restricted to nearest neigh-
bours. (In addition, in order to have 1ater a possibility of a biaxial phase, these
ellipsoids are considered not axially symmetric.) The components of the tensor,
reflected this kind of molecule, in a proper frame of reference are given as diagonal
elements of the matrix Q:

where Qxx = Q 11 Q1, Qyy = Q22 = Q2 and Qzz = Q33 = Q. Or, for a traceless
(symmetric second-rank) tensor we have

where Ι is the unity tensor and qi = Qi — ś (i = 1, 2, 3). (In the case of axially
symmetric ellipsoids we have Qi = Q2 = Q or q1 = q2 = q.)

The Hamiltonian of the system, if we use the Einstein summation conven-
tion, is

where Jαβ.γδ are the coupling constants of a four-rank tensorial interaction, while
i, j(n-n) denotes summation over nearest-neighbour pairs of sites.

In the simple case of an isotropic interaction J (J > 0), treating this Hamil-
tonian in the molecular field approximation we find a trivial solution, correspond-
ing to the isotropic state and another solution, describing a nematic phase. In
this approximation, the averages or expectation values of Qαβ's, the molecular
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parameters, referred to a coordinate system fixed in space (axes of the molecular
field), are nα = (Qαα)0 ≠ 0 for α = x, y , z or 1, 2, 3, respectively, while all other
components are zero. (The notation (...)0, used above, means the average in the
mean-field approach, based on the trial Hamiltonian H0; further for the simplifi-
cation of writing, the subscript 0 will be omitted.) For axially symmetric molecules
we have also nι = n and n = n = 1 - 2n1. Thus, n = n can be used as an order
parameter for the orientational ordering. This parameter has a discontinuous jump
at the transition temperature τQ 0.294(1 - 3Q) 2 (with τ = kΒT/3J (kB is the
Boltzmann constant and T — the absolute temperature)), from n = 1/3 in the
isotropic phase to some value n ≠ 1/3 (> 1/3) in the orientational phase. We can
define also the order parameter as s = 3n - 1 or, according to Maier and Saupe
[19], as SM-S = (3η -1)/2(1- 3Q). The Maier-Saupe order parameter has a jump
from SM-S = 0 to the value SM-S 0.43, which is in good agreement with many
experiments (see, e.g., [1]), and in the completely orientational phase takes the
value 1 (in this case n = 1 - 2Q).

We find the same result and for the tensor interaction Jαβ.γδ, but in this case
some geometrical restrictions are imposed [4]. Therefore, in the case of an inter-
action tensor of second rank (-JijάγQiάßQjγß), taking into account the symmetry
properties of the energy of two interacting ellipsoids there are two nonvanish-
ing constants J1 and J2. The interaction tensor in this case has the components:
Jxx = J  J1 , Jzz = J2 and the other ones zero. In the molecular field ap-
proximation we obtain the same result as for the isotropic interaction J with its
value J = 2(2J1 + J2)/6. The model in this case leads to a possible arrange-
ment of the long-range nematic order if J1 > 0, J2 < 0 and J1 + J2 > 0. In
the case when the interaction is a tensor of rank four (i.e. with 3 4 = 81 compo-
nents), taking into account the symmetry properties we find that there are very
few independent interaction constants and concretely five nonvanishing indepen-
dent coupling constants: Jxxxx = Jyyy y = J1, Jzzzz = J2, Jxxzz = Jyy zz = J3,
Jxxyy = J4, Jxzxz = Jyzyz = J5 and Jxyxy = 0.5(J1 - J4). Studying the case
when the lattice is completely full, we find the same self-consistency condition
and an expression of the thermodynamic potential (in the unity of 3J), where a
complementary term -J'/6J is present. These two new constants are connected
to five independent interaction constants by the formulas: 6J = 4(2J5 + J6)
and J' = 2/3 [(2J1 + J2) + 2(2J3 + J4) - 2(2J5 + J6)] for the direction [111];
6J = 2(2J1 + J2 - 2J3 - J4) and J' = 2(2J3 + J4) for the direction [001] with
condition 2J1 + J2 > 2J3 + J4 + 2(2J5 + J6) or for an arbitrary direction with con-
dition 2J1 + J2 = 2J3 + J4 + 2(2J5 + J6). By considering the nematic arrangement
of the ellipsoids we obtain the following relations among the coupling constants:
J1 > J4 > J3 > J2 and 2J3 < J1 + J2 (2J1 + J2 > 2J3 + J4).
2.1.2. Λ partial equivalence of two models

The model of ellipsoids only in the case of long symmetrical ellipsoidal
molecules and in presence of an isotropic interaction among them, related to
the orientational ordering, is equivalent to the 1attice model of rod (cylindrical)
molecules. In this case the molecular parameters, referred to a coordinate system
fixed in space (axes of molecular field), are given by R(θ , φ, ψ) QR -1 (θ, φ, ψ) where
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R is rotation matrix, determined by the Euler angles (θ, φ, ψ) defining the molec-
ular orientation in the mean field frame of reference. Explicitly, after calculations,
we find

For a system of rods or cylindrical molecules, the components of the vector,
representing this kind of molecule, in its proper frame of reference, are given by
elements: 0, 0,1 of a column matrix u0. In the axes of the molecular (mean) field
we have u = Ru0 or

In the particular case of an isotropic interaction (Jαβγ δ = Jδα .γ δβδ Vα, β, γ, δ), the
Hamiltonian term can be written

The first constant term in (7) does not play a role in orientational ordering, while
the second term is the Maier-Saupe interaction term.
2.1.3. Lattice gas of ellipsoids

We consider now a lattice gas model of ellipsoidal molecules to study the
successive transitions according to the scheme: gas(G) -* isotropic liquid (I) -^

nematic liquid (N) [4a]. For this model with migrating molecules and not fixed
concentration, the Hamiltonian may be written in the following general form:

where σi = 1 or 0 (the site i is occupied or not) and μ is the chemical potential.
Studying this Hamiltonian (for the isotropic interaction) in the mean-field

approximation we find two possibilities:
1) Diminishing the temperature, the system first undergoes a transition to

the isotropic liquid state (I) and then at lower temperature will make the transition
to the nematic phase (N). (For illustration in Fig. 1 there is represented the
case when the value of molecular parameter is Q = 0.1. There the condensation
curve intersects the isotropic -; nematic transition curve in a triple point. At
temperatures below the triple point, only the transition curve gas —> nematic does
exist.)

2) With decreasing temperature the system goes directly from the gas phase
to the nematic state, concretely for Q < Ql = 0.056 (the ellipsoid is very long),
we have only one transition: gas(G) -* uniaxial ordered liquid(N).
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In the case of the four-rank tensorial interaction we find that we must add a
complementary term (J'/6J)(density) 2 to the thermodynamic potential and an-
other one -2(J'/6J)(density) to the chemical potential, but the main physics is
the same. The new result here is that for (1/6)(1+ J'/6J)/[(1/3.406)(1-3Q) 2] > 1
or J'/6J > 0.763 there is no Ql.

2.2. The biaxial phase

Considering the fact that the main lines of physical results in two cases
analysed above are similar when we have an isotropic interaction or a four-rank
tensorial interaction, for the reason of simplicity, to study the transition: uniaxial
order —> biaxial order we have taken the Hamiltonian

with J > 0 (such isotropic potential is not entirely realistic, particularly for the sys-
tem of asymmetrical ellipsoidal molecules, but it does retain the essential physics
of the problem).
2.2.1. Phenomenological theory

The transition between phases of different symmetry could be described in
terms of order parameter, which is a symmetric traceless second-rank tensor. It is
always possible to find a frame of reference, where it is diagonal. In this frame of
reference its components are given as diagonal elements of the order matrix S:

The other non-diagonal components are zero. The state with n # 0, ς # 0 is a
biaxial nematic state, which occurs in addition to the uniaxial phase n Ο 0, ς = 0
and the isotropic phase n = 0, ς = 0.
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The free energy being a scalar, the expansion of this function in powers of
the order parameter can only contain terms which are invariant combinations of
the elements Sαβ = (qαβ) of the order parameter tensor. In the language of group
theory we have found these invariants, expressed by only two invariants

In Landau—de Gennes theory of the nematic-isotropic phase transitions,
Gramsbergen et al. [2] have constructed all absolute rotational invariants (ARI),
which for any symmetric 3 x 3 matrix S, together with the traceless condition, are
reduced to the invariants given by (11). The free energy expressed through these
invariants is

The equilibrium states can be obtained from the minimum of the free energy
with respect to I2 and I3 (or n and ζ). It is easy to see that the presence of the
last term in (12) introduces the possibility of a biaxial state. Also Vigman et al.
[20, 21] have shown that the width of the biaxial phase region is determined by the
sixth-order term of the free energy expansion. Nevertheless, the biaxiality of the
molecules forming an uniaxial thermotropic nematic can lead to renormalization
of the Landau-de Gennes expansion coefficients, effectively diminishing or disap-
pearing the biaxial ordering. The influence of molecular flexibility may be another
factor leading to this kind of renormalization (see [21] and references therein). It
is possible, also, to analyse the influence of the inclusion of the density variation
in the Landau-de Gennes theory [22] related to this renormalization.
2.2.2. Mean field theory

In the absence of fields, a biaxial nematic phase may be expected only for
molecules which are not axially symmetric (not even "effectively"). In this case,
in the mean-field (m.f.) approximation, the trial Hamiltonian is

with Exx = Ex = E^ = Ε + δΕ = 6J(Qxx ) = 6Jnx, Ε, = Ε = Ε2 = Ε - δΕ
6J(Q) = 6Jny , Ezz = Εz = Ε3 = 6J - 2Ε = 6J(Q zz ) = 6Jnz•

In this approximation we have as before: Q 1 .f. = R(θ, φ , ψ)QR-1(θ, φ, ψ),
where Q1 = Q - ΔQ, Q2 = Q - ΔQ, Q3 = 1- 2Q and (θ, φ , ψ) are, as before, the
Euler angles defining the molecular orientation in the mean field frame of reference.
In m.f. approximation for the free energy we have
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where the partition function is

with

and the other parameters related to the ordering are

Minimizing the free energy with respect to the components of the order parameter
we find two self-consistency equations

which can be solved numerically. From numerical analysis we have found three
solutions: isotropic state, rotational symmetry state (or uniaxial state) and biaxial
state. The transition from the isotropic phase to an uniaxial one is a first-order
transition. For the biaxial solution the accuracy of triple integrals was not good
and we have attempted an expansion of the exponential for low values of ΔQ.
For example, for Q = 0.15 and ΔQ = 0.01 we have found for the biaxial order
transition point: τ = 0.076, s, = 1 - ^z = 0.42 (or 0.34 for the Maier-Saupe
order parameter). The presence of a biaxial state and the decrease in the value of
the order parameter could be useful for the explanation of ordering in the lipid
bilayers. (It is commonly assumed that S11 = S,» = S22 S. This implies either
that the molecule has cylindrical symmetry about its x-axis or that it rotates about
that axis in a time short compared with the time scale of the experiment. Both
experimental and theoretical works suggest that for lipid chains in bilayers the x-
and y-axes are not equivalent as far as motion is concerned [23].)

Also, in the case of a constant infinite-range isotropic interaction we have
found two uniaxial phases, which are separated by a biaxial phase [4b]. Another
system in which a biaxial phase could be expected is the mixture of rod-like and
disc-like molecules [24, 25]. In this case there is no need to go to low temperatures or
high pressures, thus there is no risk of unwanted crystallization or smectic ordering
as for our model described above. Also, a calculation based on the Potts-Ising
model [26] predicts a biaxial phase in a mixture of prolate and oblate molecules.
More theoretical and experimental work is necessary to understand better the
behaviour of such binary mixtures or the ellipsoid—sphere mixtures. These systems
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seem to be important in the study of the dynamics of random interfaces [27] or
the plastic state [5b]. We have used also the mixture of sphere-like (Cu atoms)
and ellipsoid-like (Zn atoms) particles to interpret two transitions in the brass'
diagram [28].

3. The model of nonmigrating molecules
3.1. Quadrupolar or ellipsoidal glasses

Consider the electrostatic quadrupole-quadrupole interaction, which is re-
sponsible for the orientational ordering in the solid hydrogen or in the mixture of
ortho and parahydrogen molecules [29]. Following [7,30, 18], the electric quadu-
pole Hamiltonian can be written as

where Om are the operator equivalents of the spherical harmonics Ym2 in the
manifold . | = 1, i.e., Ο° = (3J2zi — 2)/3 with Jzi the z-axis component of the
orbital angular momentum J on the site i, while á' are interaction constants.

In the internal-field approximation, the fluctuation terms are discarded to
retain the tuncated form

where for nearest neighbours X00 = —19Γ12/8 (Γ12 = 6e 2Q2u/25R512,, Qu is the
molecular quadupole moment, e — the electron charge and R12 designates the
intermolecular separation) [7, 30].

For the orbital angular momentum |.1| = 1, there are 2|J| + 1 = 3 values of
the z-axis component, Jz (= -1, 0, +1), which, in the coordinate system of their
eigenvectors, can be represented by the matrix: diag(-1,0,+1), or its square by:
diag(1,0,1). Thus, the modified operator 0 '0 = -00 /3 = (2 — 3Jz)/9 can be rep-
resented by the matrix: diag(-1/9,+2/9,-1/9), or, after an axis transformation, by

From Eqs. (19), (20), for an arbitrary coordinate system we refind (3) as follows:

where the, interaction constant Iij can be expressed through X00. Therefore, related
to the orientational space ordering, the system of quadrupoles is equivalent to the
system of ellipsoidal (or cylindrical) molecules. Following the main lines of the
way given in [30-33], for the low concentration C0, below a critical temperature
Teg Π 0.53c01/2, we find a state, similar to a glassy structure (an orientational
glass state, i.e., a "higher rank" glass state), in which all possible orientations of
ellipsoids are equally likely, but the orientation at a given site is frozen [18]. These
results seem to be useful for the description of the experimental facts related to
the orientational ordering in such systems as solid hydrogen, by applying a model
of ellipsoidal molecules.
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3.2. The orientational ordering in solid hydrogen

Let us have 0 < c < 6, c is the concrete number of nearest neighbours and
co = c/6 — the concentration. To study the variation of the transition tempera-
ture versus the concentration we shall suppose that there are no displacements of
the ellipsoidal molecules from one site to another. For this model of nonmigrat-
ing molecules, assuming these objects as symmetrical ellipsoids, represented in its
proper axes by tensor q with Trq = 0, the Hamiltonian is

where σ° has a given (fixed) value: 1 or 0 in the site i.
In the m.f. approximation following the same procedure as in Sec. 2.2.2, we

find, for the variation of the phase transition temperature versus the concentration,
the relation Τc = const•c, which is linear.

In the "supermolecular" field approximation, the first-order approximation
is properly the mean field approach. Assuming the commutation between Η and
trial Hamiltonian Η0, the partition function can be written

and the free energy

where mn(H - H0) is the n-th rank cumulant of (H - H0).
In fact, to find the free energy, we must calculate only the terms of H, the

terms of H0 can be found by a simple derivation. Therefore, i.e., we have

Analysing the terms of the free energy, we obtain

In the second case we have some common indexes for the terms of a nonzero
expression in the bracket ("linked cluster theorem"). Then, to calculate m2(Η) we
consider separately two cases: (a) j = k, i # 1 and (b) j = k, i = 1.

In the case (a) there are 4 possibilities: j = k, i 0 l; j = l, i ψ k; i k, j 0 1
and i = l, j  k, thus
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To simplify the procedure, we exclude the condition i 0 1 in (a). The added
term (i = l) in (α) is subtracted in (b), which is very useful for a diagrammatic
interpretation. From the relations

To calculate mn (II) we follow these general ules:

1. consider all diagrams with n-linkings,
2. to each linking we join —J,

3. to each vertex with k-linkings, we join the cumulant mk(qαβqγδ • • •),

4. multiply by (n!/g), where g is the rank of symmetry group of the graph,

5. make the total sum with respect to all ellipsoid indexes.

Following these ules and knowing that n x = (qxx) = (qyy ) = ny = -1/2nz =
- (q), (qxy ) = (qxz) = (qyz) = 0, (qx y qxz) = (qxyqyz) = ... = 0, (qαβqγδ) = 0
when α ψ β and γ = x, y , z, for the reduced free energy (per site), in the second-
-order approximation, we obtain the expression
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In the disordered (isotropic) phase, where S = 0 (e z = 0), we have
f0 (S = 0) = -0.8cb. From numerical determination of the absolute minimum
of the free energy differences: Δf0 (S) = f0 (S) - f0 (0) = f0(S) + 0.8cb, we find
"the coordinates" of this minimum, i.e., the critical temperatures of the different
phase transitions, for a given (fixed) value of c. It can be seen from Fig. 2a,b and
Fig. 3a,b that the transitions: isotropic state —ł uniaxial state are of the first order.
In Fig. 4 we have represented the variation of the reduced critical temperature  τ^
versus the concentration co, obtained by the method outlined above for the model
of symmetrical ellipsoids. The most important feature of the studied, system is
the existence of a special critical point (a critical concentration 0.445) clearly
shown in Fig. 4. When the temperature and the concentration are decreased, the
ordered (uniaxial) phase is a disc-like (oblate) phase (n z < 0). The part 102 of
the phase diagram in this figure reproduces conveniently the experimental results
for the orientational ordering in solid hydrogen (ortho-H 2 or para-D2) [7], while
the part 03 is not observed. Also, no percolation evidence is found in this case. If
we consider free migration and also, the empty sites filled by spherical molecules
as in [5], in the m.f. approximation and the approach of first (nearest) neighbours
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interactions, we can find a kind of "percolation concentration" for the orientational
ordering (dependent on the positional ordering), but the transition oblate phase
-> prolate phase will be not more possible.

4. Conclusions

This paper presents a simplified description of the orientational ordering of
anisotropic particles of ellipsoidal (uniaxial or biaxial) symmetry, dispersed in a
cubic lattice. The nearest-neighbour tensorial interactions, which correspond to
these particles or bodies of ellipsoidal kind, are the simplest purely orientational
ones, fully separated from the translational degrees of freedom. This simplification
is necessary to avoid artifacts related to the space arrangements of the particles.
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The main aim of this paper was to study, within a standard analysis, the
different orientationally ordered states and respectively different phase transitions
in this system of asymmetrical (ellipsoidal) molecules (axially symmetric or not).
The results, obtained by using a molecular or supermolecular field approach, are in
good agreement with some experimental facts related to nematics, solid hydrogen,
etc. Another result is the theoretical existence of a biaxial nematic mesophase, but
up to now a biaxial nematic phase has not been observed for thermotropic liquid
crystals, it has been discovered in soap-like solutions. Gas-liquid-nematic phase
diagram and the orientational glass are also considered.

A new application of this molecular model could be possible in studying the
biological membranes. Now we are trying to use this system of molecules, dispersed
in a quasi-cubic (a bilayer) lattice, to explain the ordering and its variation in lipid
bilayers.
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