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The second-harmonic generation due to the intersubband transitions
in nonparabolic two-level quantum well systems is discussed theoretically
taking into account the depolarization effect.
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The second-order nonlinear optical properties connected with the intersub-
band transitions in asymmetric quantum wells (AQWs) have been investigated
experimentally and theoretically by several groups [1-3]. In most of the papers the
authors concentrate on the systems with parabolic subbands and neglect the dy-
namical screening. The effect of this screening on the linear response is well known.
In systems with parallel subbands it leads to a depolarization shift between the
intersubband spacing and the intersubband infrared absorption resonance [4, 5].
However, what is less known is that the depolarization effect (DE) modifies also
the absorption line shape when the subband separation depends on the wave vec-
tor due to the nonparabolicity of the constituent materials. Calculations reported
in Refs. [6-8] indicate that the contribution to the line broadening resulting from
the nonparabolicity is, to a large extent, compensated by the DE.

The second-harmonic generation (SHG) spectum is also affected by the DE
[3,9, 10]. It has been shown experimentally [3] that in AQWs with two parallel
subbands the resonance in x( 2 )(2ω) occurs when 2ħω (or ħω) coincides with the
depolarization shifted intersubband energy, and not the bar intersubband spacing.

In this note we present preliminary calculations indicating that, like in the
case of the.linear response, the DE leads to a line narrowing of the SHG spec-
tum for the two-subband nonparabolic system. (The case of the doubly-resonant
three-level system will be discussed in a separate paper.)

Our analysis is based on the density matrix formulation in the electric dipole
approximation similar to that used in our previous papers [10,11].

In a reference system with the z-axis normal to the surface the eigenfunc-
tion of the effective mass Hamiltonian describing the electron in the j-th sub-
band can be written as exp(ik|| r||)Ψj , k li (x) where k|| and r|| are the wave vec-
tor and the position vector in the x-y plane. When the nonparabolicity is not
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very strong the multidimensional vector of envelope function W k 	can be re-
placed, in the first approximation [12], by the (normalized) conduction compo-
nent φj(z) Ξ φjk||=0(z) which is the solution of the one-dimensional Schrödinger
equation [ρ /2m + V (z)1 φ3 (z) = Ej φs (z). Εj is the minimum energy of the j-th
subband and m is the energy- and position-dependent effective mass [6, 12]. The
nonparabolicity of the constituent materials leads to the nonparabolicity in the en-
ergy dispersion relation jEj(klel) for electrons in the j-th subband. Consequently,
the energy separation between the subbands Ε21(k||) [= Ε2(k|) - Ει(k||)] depends
1 i1 ki|. (For the semiquantitative estimation the above dependence can be calcu-
lated along the line of our implementation [6] of the empirical two-band model
proposed in Ref. [13].)

The equation of motion for the matrix elements of the density operator p [in
the representation of | i, k||) = exp(ik|| r || )φj (z) (j = 1, 2)] is given by

where Ho is the one-band unperturbed Hamiltonian, V Ξ V (z, t) is the effective
perturbing Hamiltonian, τi; 1 is the relaxation rate from the i-th subband, τ ij-1
is the off-diagonal elastic dephasing rate and Δp = p - p(0), where p(0) is the
unperturbed density matrix. The diagonal element p = p2 kip . k || equals to the
thermal equilibrium occupation probability [Fj(k||)] of the corresponding state.
The equilibrium surface density of the electrons in the j-th subband is given by
Νj = 2 Σk|| Fj (k||). (In this paper the explicit reference to the dependence of the
matrix elements of p on k|| is omitted for brevity.)

The electric field E(t) = E(ω) exp(-iωt) + c.c. of the pumped radiation
(applied in the z-direction) modifles the density distribution of electrons. This
leads to the modification of the effective perturbing potential V(z, t) = Vext (z, t)+
Vi (Ζ, t) where VeXt (x, t) = eE(t)z is the external perturbation. Vind (Ζ, t) (= the
potential induced in the system) is given (in the electrostatic limit) by the solution
of Poisson's equation with the change of the distribution Δn(z, t) as the source
term [5,10].

As in most of the previous papers we assume that Vext(z, t) is sufficiently
small. Then, the surface electronic polarization of the AQW can be expanded in
powers of E. If we shall limit ourselves to the first two orders and neglect the
rectification effect [3] then

where X( 1 )(ω) and X( 2)(2ω) are the linear and SHG coefficients (per unit surface),
respectively.

Employing the similar expansion for Δρ, V and Δn we get (for details see
Refs. [10, 11]) the following expression for the n-th-order surface electronic suscep-
tibility
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One can check that if we neglect the nonparabolicity of the subbands
[Ε21 (k||) = Ε21] then G(ω) = Ε22Ι/[E221 - (ħω + iΓ) 2] where '21 = Ε21( 1 + (1) 1 / 2

is the depolarization shifted intersubband energy [4, 5].
We find from Eq. (6) that in the presence (absence) of the DE the linear

absorption spectum is determined by ImG(ω) [ImL(ω)] (see Refs. [6-8]).
To obtain a simple analytical expression for X( 2 ) (2ω) we have to made several

approximations. Following [1] and [10] we restrict to the near resonant situation
27 ω Ε21 and assume that α K 1, i.e. Ε21 É21. In this limit one can neglect
the contribution of the nonresonant terms p 2)(2ω) and p12(2)(2ω) to X( 2 )(2ω) [see
Eq. (3)]. Moreover, calculating the nonresonant terms V 1 (ω) and p(ω) one can
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neglect the DE and replace Ε21(k||) by Ε21. Employing the above simplifications
we get the following expression for the SH susceptibility:

In the case of the parabolic subbands G'(2ω) = Ε21/[2(Ε21 — 2ħω - iΓ)] where
Ε21 = Ε21( 1 + α/2). Note that in the approximation used here (α « 1) the
difference between É21 and Ε21 is negligible. Consequently, the difference between
G(2ω) and G'(2ω) is also small (when 1 ω is close to Ε21/2).

The SHG spectum is proportional to |X( 2 )(2ω)| 2 [1]. Thus, in contrast with
the linear case, the line shape is now determined mainly by |G'(2ω)| 2 , not by
ImG'(2ω) [≈ ImG(2ω)]. However, our calculations show that the difference in the
spectral shape between ImG'(2ω) and |G'(2ω)| 2 is not substantial. This means
that the SH generation spectrum is affected by the DE in the similar way as
the linear absorption spectum i.e., the peak value (line width) of |G'(2ω)| 2 is
larger (smaller) than the peak value (line width) of L'(2ω)| 2 . As an illustra-
tion we present (see Fig. 1) the ω dependence of |G'(2ω)| 2 = |G'(2ω)| 2 (2Γ/Ε21 ) 2

and |. (2ω)| 2 = |L (2ω)| 2 (2Γ/Ε21) 2 calculated at T = 0 K and T = 300 K for
Al0.4Ga0.6 As/GaAs/Al0 2 a0 r2 Αs/Αl0 4Ga06Αs AQW stucture with the GaAs
well thickness of 35 Å, the total well thickness of 70 Å , Γ = 3 meV, N1 =
10 12 cm-2 and N2 = 0. (The above stucture is nearly optimized [1] for response
at ħω 100 meV.) For the GaΑs/Αl xGa 1-xΑs parameters we used: the inter-
face energy barrier ΔΕ (x) = 0.7ΔΕg(x) where ΔΕg(x) [eV] = 1.425x - 0.9x 2 +
1.1x 3 ; mΙΑlxGa1-xΑs = [0.0665+ 0.0835ΔΕg(x)/1.625]m0 and γ = 4.9 x 10 -19 m2

for the nonparabolicity coefficient [13]. (Following [6] and [7] we neglect the tem-
perature dependence of the above parameters.)
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From the obtained results we can conclude that in the case of two-subband
nonparabolic systems the DE leads not omly to the shift of the peak in the SHG
spectrum but also induces the line narrowing and the enhancement of the peak
value. Preliminary calculations indicate that similar narrowing and enhancement
should also take place in the double resonant three-subband systems.
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