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We are growing ZnSe, ZnS and CdSe layers epitaxially on GaAs(001)
substrates by atomic layer epitaxy and molecular beam epitaxy. The sub-
strates are prepared by a H-plasma method in order to obtain a sharp in-
terface between substrate and layer. The quality of our samples is controlled
by reflection high energy diffraction and X-ray diffraction. Furthermore, the
samples are characterized in situ by photoelectron spectroscopy. We observe
resonant Zn 3d 8 and Cd 4d8 satellites, which are used to check the layer
quality. As a result, the valence band offsets of CdSe/ZnSe and ZnSe/CdSe
were obtained. The values are ΔEv(ZnSe/CdSe) = -(0.13 ± 0.07) eV and
ΔΕ (CdSe/ZnSe) = -(0.13 ± 0.07) eV, which confirm the commutativity
rule.

PACS numbers: 79.60.Jv

1. Experiment

ZnSe, ZnS and CdSe layers are epitaxially grown on GaAs(001) substrates by
molecular beam epitaxy (MBE), which is mostly used in the atomic layer epitaxy
(ALE) mode. The quality of the surfaces is in situ controlled by reflection high en-
ergy diffraction (RHEED). In order to control structural properties of the samples
high resolution X-ray diffraction is used. The valence band offset between these
materials is determined by photoelectron spectroscopy (PES) with synchrotron
radiation. A MBE-chamber was built, which has been attached to an analyzer
chamber positioned at BESSY (Berliner Elektronenspeicherring-Gesellschaft für
Synchrotronstrahlung mbH). With this equipment heterostructures are grown in
steps of monolayers and the surface is investigated during the growth interrup-
tions in situ by UPS. In the ALE mode the different effusion cells are alternately
opened. The successive openings of the cells containing the respective elemental II-
and VI-materials is defined as one shuttercycle (SC). For the growth parameters
see Ref. [1].

•Thiś work was supported by BMBF 05 622WRA 0.

(1113)



1114 	 M. Worz, M. Hampel, R. Flierl, W. Gebhardt

2. Results
2.1. Hydrogen plasma preparation

The GaAs(001) substrates are cleaned by a chemical wet etching process [2].
A hydrogen plasma is used to remove the oxide overlayer. The substrate tem-
perature is 2000C. Figure 1 shows the spectra of a chemical etched GaAs(001)
substrate without and with H-plasma treatment for various periods. Whereas in
the first spectrum the oxide components of the core levels [3] and a strong oxide
signal in the valence band dominate, these signals are obviously reduced after a
2 minutes' H-plasma treatment. A 4 minutes' treatment finally leads to a GaAs
surface, where only the bulk components of the GaAs-core levels are seen but the
oxide signal in the valence band is totally removed.

The preparation of ZnSe- and CdSe-surfaces leads to analogous results. The
oxide components of the core levels are removed and the bulk components increase.
A Se deficiency at the surface is observed, which completely vanishes after growth
of a few SC ZnSe or CdSe, respectively.

2.2. d8-satellites

GaAs(001) substrates and ZnSe- or CdSe-epilayers are treated with hydrogen
plasma. On these surfaces thin ZnSe- and CdSe-layers are grown and investigated
with PES. Figure 2a shows different photoionization processes, which are especially
relevant for the cases of Zn 3d- and Cd 4d-levels. The transition A describes the
direct excitation of a d-shell electron into the continuum leading to a single hole
nd9 final state. B is the MVV Auger process, C i8 a non-resonant shake up and
D the resonant shake up. They all lead to two hole nd8 final states. Furthermore,
the photoexcitation C and D have the same final states and therefore give rise to
resonant emission if the photon energy is near the np threshold.
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We write for the non-resonant shake up (C)
ħω + np6 nd10 (n + 1)s 0 - np6 nd8 (n + 1)s 1 + e- ,

and for the resonant Auger (D)
hω + nρ6 nd10 (n + 1)s 0 -b nρ5 nd10 (n + 1)s 1 --> np6 nd8 (n + 1)s 1 + e- .

When the direct photoexcitation can be described by Εκ = ħω - ΕB - Φ
(φ - work function) and Koopman's theorem EB = -ε (εj — one-electron
energy) is valid for the two hole final states (B, C, D) the following relation holds:

ΕΒ = - (ε1 + Ueff) , Ueff — effective Coulomb interaction.
Here the effective Coulomb interaction is the total additional energy, which is
necessary to excite a second hole at the same atom and which deviates from two
"one hole" energies. For a more detailed study of that process see Ref. [4].

Figure 2b shows the Zn 3d8 satellite observed at a photon energy of about
ħω 90 eV. The multiplet splitting of the twohole state should be the same for  all
Zn compounds, whereas the intensity ratio Ι(d8 )/Ι(d9) and the effective Coulomb
interaction depend on the material (see Table).

These two values should change if there are ternary regions in the grown
heterostucture or if islands of the elemental materials are formed. We indeed
observed a decrease in the intensity ratio Ι(d8 )/Ι(d9 ) at rough surfaces. Fur-
thermore, while investigating this ratio for different photon energies it is possi-
ble to "scan" the 3p-level of Zn and to obtain the 3p1/2-3p3/2 splitting. We find
ΔΕ o (Zn3p) = (3.03 ± 0.05) eV.
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Analogous measurements have been performed at a photon energy of ħω r.,
70 eV for Cd 4d in CdSe. We observed an intensity ratio Ι(d8 )/Ι(d9 ) = 5%, an
effective Coulomb interaction Ueff = —8.8 eV and a Cd 4p-splitting ΔΕso (Zn3p) =
(7.54 ± 0.05) eV.

2.3. The valence band offset ZnSe-CdSe

We have grown ZnSe on CdSe and CdSe on ZnSe in steps of a few mono
layers and measured UPS spectra during growth interruptions to investigate the
valence band offsets. The valence band edge is extrapolated by a straight line.
Then the difference between the edge of the pure ZnSe and that obtained after
growth of 70SC CdSe is determined. In the same way we treated the heterostruc-
ture ZnSe/CdSe. These differences have to be corrected for the band bending [7],
which normally can be evaluated from the shift of the core levels. In the case of
ZnSe-CdSe heterostuctures, however, the only evaluable Se 3d signal has to be
fitted by a large number of different components (overlayer, CdSe, ZnSe, mixing
components), which leads to a large uncertainty. For the Se 3d core level of the pure
materials we find ΕΒ(Se3d/ZnSe) = 54.09 eV and ΕΒ(Se3d/CdSe) = 53.83 eV.
These binding energies are determined as well for the heterostructure. By sub-
tracting both core level differences we obtain the band bending.

Figure 3 shows the valence band offset of ZnSe/CdSe corrected by the band
bending. The results for both directions ZnSe/CdSe and CdSe/ZnSe are

It is obvious that in the case of ZnSe—CdSe heterostuctures the commutativity
ule is confirmed, which was found as well in ZnSe-ZnTe [8]. These results agree
well with results, which are derived from optical measurements of quantum wells
by Lankes [9], who found ΔΕ (ΖnSe-CdSe) =  ±(0.17 ± 0.01) eV.
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