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We calculate the eigenfrequencies of bulk semiconductors using
tight-binding total energy calculations of an ideal and a distorted lattice.
We correlate the obtained energy change with the harmonic force constants
appearing as parameters in the expansion of the potential energy of the crys- 	.
tal lattice in terms of the displacement. A good agreement of the calculated
q = 0 optical vibrational modes with the experimental values for Si, Ge,
GaAs and GaP bulk crystals is obtained. The influence of a surface on the
force constants and the vibrational frequencies is studied.

PACS numbers: 63.20.—e

1. Introduction
Vibrational eigenfrequencies of bulk semiconductors have been calculated by

several theoretical methods. The classical theory of the dynamics of crystal lattices
has been developed by Born and Kun Huang [1] and other authors (for a review
see [2]). We will demonstrate that another approach starting from tight-binding
(TB) total energy calculations can be used for the determination of the vibra-
tional properties as well. In the TB theory the total energy of a sample which
is assumed to consist of valence electrons and cores is calculated on the basis of
a parametrization of special matrix elements built from binding and anti-binding
orbitals of hybridized orbitals and the core-core interaction [3]. Minimizing a to-
tal energy functional one obtains the energy for a configuration of cores in fixed
positions. Any distortion of this configuration by a vacancy or a surface leads to
a change of the total energy.

In the harmonic approximation the difference of the total energy in the
equilibrium and the distorted configuration is proportional to the force constants
and the displacement. Then, knowing the force constants it is straightforward to
obtain the dynamical matrix and to calculate the eigenfrequencies of the considered
ideal bulk or distorted sample.
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2. Theory

The potential energy Φ of a system of atoms in dependence on the displace-
ment of atoms u(m, K) reads [1]:

where 1 and m are the indices of the elementary cell of the lattice, K and v indicate
the atoms in the elementary cell and i, j label Cartesian coordinates. Φ2 and Φij
are the force constants of first and second order. The dynamical matrix D(Kv, k)
is given by

For the TB calculation a charge self-consistent approach introduced by Neugebauer
and other authors [4, 5] for the calculation of the configuration of semiconductor
interfaces has been used. The total energy of the electron-core system is given by

where the first part describes the electronic total energy and the second part — the
core-core interaction energy whose calculation was performed with an improved
point charge model after Majewski and Vogl [6]. P is the statistical operator, F —
the Fock-Hamilton operator and h denotes the one-electron contributions to the
total energy. ZA and ZB are the effective charges of the cores and γAB denotes
the two-particle matrix elements of the interaction potential between two cores.

3. Results and discussion

The results of the calculations are summarized in Table I (bulk frequencies)
and Table II (change of the force constants in the presence of a surface). The
frequencies have been obtained from the dynamical matrix whose elements depend
in cubic crystals on the force constants Φ and Φ,. The corresponding energy
changes per elementary cell for the displacements u x and ux = u, of one atom are
X and Y, respectively. An example for the dependence of the energy change on
the displacement is shown in Fig. 1. One can recognize bulk regions (layer 5 to
19) and surface regions (layer 1 to 4 and 20 to 24). In the bulk region the energy
change does not depend on the number of the layer whereas a strong modification
of the energy change is observed for the surface region. The 1atter can be explained
by the modified force constants between the atoms.

The theoretical results and the experimental data taken from literature for
the bulk materials C, Si, Ge, GaAs and GaP are shown in Table I. The frequencies
fi and f2 can be related to the LO and TO q = 0 bulk frequencies. The removal
of the LO-TO degeneracy depends on the value of Y which is in GaAs and GaP
an order of magnitude larger than in Si and Ge. Moreover, the small values in
the homeopolar materials are within the error range of 1 meV. The values of X
are of the same order of magnitude in both types of materials. For C both values
differ by an order of magnitude from results for Si and Ge. The comparison of
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the theoretical values with the experimental data show that all theoretical values
are below the experimental data (with the exception of C). The best agreement
between experiment and theory is obtained for GaP. The charge self-consistent
procedure for the calculation of the total energy is more appropriate for polar
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materials but it works quite nicely if the eigenfrequencies of the nonpolar materials
are of the same order of magnitude. For the stronger bonding in C the minimizing
procedure in terms of a charge redistribution does not seem to be the proper way
to proceed and overestimates the frequencies.

The underestimation of the frequencies can be explained by the approxi-
mations introduced in our approach where the bulk properties are deduced from
the energy changes related to displacements of a limited number of atoms in one
elementary cell, despite the fact that the reaction of the whole sample to the dis-
turbance of the equilibrium is taken into account by the charge self-consistent min-
imization procedure of the total energy. Nevertheless, the good agreement between
experimental and theoretical results allows to conclude that the force constants
and the frequencies can be obtained from the local disturbance of the equilibrium.

The modification of the force constant under the influence of a surface are
shown in Table II for a Si slab consisting of 216 atoms. There are the following
modifications in comparison to the bulk region: (i) the relation between the param-
eters X and Y is strongly modified, (ii) the reduced symmetry in the surface region .

caused by the nonequivalence of the directions parallel and perpendicular to the
surface is described by the additional parameters Z and A, (iii) the displacement
in the surface region can result in a decrease in the total energy because certain
types of displacements simulate the relaxation within the surface region.

The symmetry reduction in the surface region of the investigated Si sample
causes a removal of the LO-TO degeneracy due to the nonequivalence of the force
constants Φxx and Φzz as well as Φx , and Φxz which results in a pronounced
deviation of the values of X and Y from the values of Z and A, respectively.
The force constants are overestimated because the atoms are displaced from their
equilibrium positions in the ideal lattice. For an improvement of these parameters
given in Table II the relaxation and the reconstruction of the surface region has
to be considered. Nevertheless, the results indicate a drastic change of all force
constants in the surface region. The influence of an interface on the vibrational
properties of samples consisting of different materials can be studied by the same
method.
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Summarizing we can state that the method is appropriate for the calculation
of the vibrational eigenfrequencies of bulk crystals as well as of crystals containing
defects like surfaces and interfaces via the local changes of the force constants
taken from tight-binding total energy calculations.
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