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On the example of an explicitly solvable model of a semiconductor with
alloy disorder in the conduction band, it is shown that a slowly varying
exciting light pulse can be treated in an adiabatic approximation, that is,
the self-energy of an electron can be taken as a continuously evolving series
of snapshots of self-energies corresponding to a steady illumination with the
instantaneous value of the light strength.

PACS numbers: 78.47.4p, 71.25.—s

1. Introduction

A realistic theory of fast optical transients in disordered semiconductors
should be suitable for determining the response to optical pulses with intensities
varying in a wide range and of fairly general shapes. The transport type theo-
ries are often not sufficient, as the transients are, as a rule, non-thermalized and
quantum coherence between the exciting field and the internal dynamics of the
system occurs. A fully quantum theory [1] was proposed and further developed in
[2] and [3]. While this work illuminated basic notions like the so-called generalized
Kadanofl-Baym ansatz, an explicit solution was limited to the sudden onset of
the light intensity. This limitation was related to the technique used, namely the
double time Green functions (GF) of the Kadanoff~-Baym type.

This communication presents first resul ts obtained for pulses of more general
shapes.We limit our task in two directions. We find only the retarded propagators
under such transient conditions. Already this is quite involved. It is then important
to study the limits. In contrast to the abrupt onset treated in [2], we study here
the opposite, “adiabatic” limit of the pulse.

After the preliminaries of Sec. 2, we propose in Sec. 3 to treat the electron
propagation as a sequence of time evolutions under steady illumination with a
slowly varying strength. In Sec. 4 we concentrate on the field and disorder depen-
dent optically induced gap in the adiabatic self-energy.
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2. Model Hamiltonian and the coherent potential
approximation propagators

The Hamiltonian describing the resonant action of a very strong electro-
magnetic field on a two-band semiconductor with substitutional disorder in the
conduction band has the following form in the Schrodinger representation:

Hs(t) = W, + We + Ve + U(2). (1)

Here the band Hamiltonians Wy = P,WyB;, b = ¢, v, are diagonal in the Bloch
basis and the band projectors Py, P. are non-random. The random potential is site
diagonal

Vo= PViPe= 3 leieleil = (Ve) + 3 Des
i i

(e — ()
d;

= (e)P. + Z |c?) eV {ci| (2)

and there is no correlation between d; for different sites. Finally, U(t) is a non-
-random dipole interaction with a quasimonochromatic light wave with frequency
w treated in the rotating wave approximation (RWA). A unitary transformation
attributed to Galitskii [4], O(t) = P. + Pye'?, brings the Ilamiltonian (1) to

Hs — H(t) = OHgO%" = W, + Vo + (W, + hwPy) — eE(t)(zey + Tve)

= We + Ve + Wy + U (1), (3)

where £(t) is the electric field amplitude, z.y — the dipole transition matrix. After
the transformation, the Hamiltonian has the valence band shifted by fw to satisfy
the weak field resonance condition for the optical transitions, which appear now as
an effective band hybridization with a time-varying hybridization strength. This
is the only explicit time dependence in the Hamiltonian.

For one alloy configuration, the retarded propagator G(¢,1’) is simply the
evolution operator of H(¢) multiplied by iAJ(t—1t’). For the configuration averaged
quantities we will use italics, G* = (G*), etc. To obtain G*, we configuration average
the equation of motion for G, introduce the self-energy and get the Dyson equation

iRO,GE(L, 1) — (H(£))GF(t, 1) — / AIsr (4, DGE(E, 1) = 8(t — ). (4)

To obtain a closed equation of motion, we express X as an approximate functional of

G using the coherent potential approximation (CPA). In the CPA, the self-energy
27 is decomposed into single site contributions which are non-random. On a single
site, the true D; is substituted back for X;; this local disturbance is characterized
by a single site scattering matrix 7;. The Soven condition [5] requires that this
scattering vanish on average

(Ti) = 0. | (5)

This is an implicit equation for X.
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3. Adiabatic approximation for the self-energy

For a general time dependence of the external field £(¢), the Dyson equation
is prohibitively difficult for an explicit solution, as the double time structures of
Eq. (4) do not lead to convolutions. On top of that, the self-energy is not known be-
forehand. This is apparent in the weak scattering limit of the CPA (“sell-consistent
Born approximation”):

Zi(t, V) = (D:G"(t,1)D;). (6)
Thus, in the course of solving the Dyson equation, we have to generate the
self-energy by introducing G into the latter equation, or, in the general case, into
the Soven condition (5).

Our aim is now to decouple the construction of X from the solution of the
Dyson equation. The procedure, somewhat in the spirit of Ch. 9 of the book by
Kadanoff and Baym [6], is based on two observations:

1. For given times £; > {s, the GT is determined only by the £(¢) with ¢; >

t > t3. For the alloy GF, this statement is exact, because the unaveraged

GF has a time-local Hamiltonian and the (- - -) is also instantaneous.

2. The self-energy is appreciable only in a finite range of the difference ¢ — ¢/,
shorter than the typical quasiparticle lifetimes and characterizing, in fact,

the quasiparticle formation time TrorMm. This second statement has only a

qualitative character, as the self-energy will usually have weak long time

tails connected with the branching singularities of X in the complex energy

plane [7].

With these assumptions, we will introduce an auxiliary self-energy Z(¢—1'|£)
corresponding to, and parametrized by, a steady illumination £. It depends only
on the time diflerence, as indicated. We proceed to our basic approximation

Z(t,t) ~ Z(t -t |E®)). )
The “upper” time appears in the approximate X' at two places. First, as a para-
meter of the slowly varying external field £(¢). Second, in the time difference, with
respect to which the X changes rapidly. The approximation has an asymptotic
nature, with a semi-quantitative criterion

1£(¢) — £(t — Trorm))|

50) <1 (8)
The meaning of the approximation can be followed in Eq. (6). If £ does not change
much between ¢’ and t, the GF inside the average can be replaced by its steady
illumination approximant. Note that the approximate self-energy obeys the Soven
condition exactly. The loss of self-consistency occurs between the approximant GF
and the solution of the Dyson equation.

4. Actual construction of the adiabatic sclf-energy

The actual calculation of the adiabatic self-energy is simplified by Fourier
transforming X with respect to t—#' and solving the Soven equation (5) in the com-
plex energy plane. Furthermore, for our model (3), the self-energies are specified -
by a single ¢c-function

Y=0oP, X=0P. (9)
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With this, and using the definitions (1)-(3), it is easy to obtain the Soven equation
in an explicit form. We write it here for the instructive case (6):
1
7(2) = {(e — {€))? - . 10
(2) = (( ()))Zz—€¢~—(e)—-a(i)—~|Q|2/(z—cv—hw) (10)

k€BZ
Iere, €. and ¢, are k-dependent dispersion laws. Up to the secondary renormal-
ization effects, the modifications of the self-energy caused by the light concentrate
near the crossover of ¢; — (¢) and €y + hw, which is the k-point of the weak field
vertical transitions. Also Q = —e€ - z¢y(k) is k-dependent in principle, but we ne-
glect this, taking for @) the value at the resonant crossover. @ is the hybridization
strength, and with no disorder, it would cause a gap in the hybridized bands of the
width 2|@|. For a constant complex &, this gap would always be smeared. In the
self-consistent treatment, the coherent action of the light and of the disorder leads
to a complex behavior which we want to demonstrate presently. X' depends on the
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Fig. 1. (a) The retarded GF Z&(E + 10, Q) as a function of E and Q for given alloy
parameters. (b) The same as in Fig. 1a, but with the smearing value %/0.3 ps.
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energy and on two parameters, Q characterizing the illumination, and {(e — (¢))?2)
measuring the disorder; the latter in turn depends on the alloy composition and
the atomic level displacements. We consider a binary alloy with a moderate disor-
der leading to quasiparticle lifetimes in the order of 0.1 ps and the values of Q in
the same range to make the effect of both ingredients comparable. The estimates
show that this corresponds to usual laboratory subpicosecond light pulses.

Figure la shows a @-dependence typical of a given alloys, as would corre-
spond to an actual pulse. The quantity shown is Z&(E + 10, Q). It is negative; the
mesa at the zero value represents the optically induced gap. Without disorder, it
would close just at @ = 0. Here we see two regimes; it can be seen that important
vestiges of the gap persist also for weaker @), however. It can also be seen that
the basic plateau far from the gap is largely determined by the disorder, and its
()-dependence is very weak.

Figure 1b characterizes the same situation, but with an additional inelastic
scattering simulated by a small imaginary part of . We chose the smearing to be
1/0.3 ps, comparable with the alloy scattering effect, and the self-energy behaves
correspondingly: certainly the gap effect is not suppressed, at least for stronger
illuminations.
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Fig. 2. The retarded GF for constant illumination (@ = 0.005) eV, but for alloy con-
centration varying in the range 0-100%.

Finally, in Fig. 2 the Z& is shown again, this time for a constant illumina-
tion Q = 0.005 eV but in dependence on the binary alloy composition. A neat
“Nordheim” parabolic depedence of the crest of the self-energy landscape can be
seen. For smaller concentrations, a gap opens up, but for concentrated alloys it

gets closed for our choice of parameters.
To conclude, this type of study permits to classify various situations and to
develop a better understanding of the fast excitation processes in semiconductor

alloys.
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