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CALCULATIONS OF NATIVE DEFECTS
IN CUBIC AIN

I. Gorczyca*, A. SVANE AND N.E. CHRISTENSEN

Institute of Physics and Astronomy, University of Aarhus, 8000 Aarhus C, Denmark

We have studied the electronic structure of native defects in cubic AIN.
N and Al vacancies, antisites and interstitials are investigated in differ-
ent charge states. We have performed first-principles calculations based on
density-functional theory, using two methods. The first one is the Green-func-
tion technique based on the linear muffin-tin orbital method in the atomic-
-spheres approximation. Defects considered are all ideal substantial ones, i.e.,
no relaxation of the neighboring atoms is allowed for in this method. The
results for aluminium vacancy and for nitrogen antisite are compared to the
calculations using supercell approach and the full-potential linear muffin-tin
orbital (the second method) with lattice relaxation included.

PACS numbers: 73.61.Ey, 71.55.Eq

1. Introduction

III-V nitrides are of great interest nowadays due to their properties impor-
tant to applications [1] and to fundamental materials science. However, little is
known about point defects in these materials. In this paper we concentrate on na-
tive point defects (vacancies, antisites, interstitials) in one of the most important
representatives of nitrides — AIN. AIN can crystallize in two phases — cubic and
wurtzite. We focus here on the cubic phase believing that there is no substan-
tial difference in impurity level positions between the two phases and conclusions
drawn from the present calculations can be applied to the wurtzite phase as well.
A comparison of defect properties for wurtzite and cubic GaN made by Neuge-
bauer and Van de Walle [2] showed only minor deviations in formation energy and
atomic relaxations between these two hosts, and energy level positions remained
practically the same. The only difference is a small split of the 5 gap states related
to the lower symmetry of the wurtzite structure compared to the cubic structure.
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2. Method

To perform first-principles calculations we have used two methods based
on linear muffin-tin orbital (LMTO) method. Both are using the local-density
approximation (LDA) [3] to density-functional theory (DFT), by which exchange
and correlation effects are accounted for by a simple local potential. The first
method is the Green function technique [4]. The second one is the full-potential
LMTO in supercell geometry.

In the Green-function method the valence electronic structure of the impu-
rity atom is obtained from the Green function G, which is found by solving the
Dyson equation with Gy — the Green function of the pure crystal host, and AV
— the perturbation due to the impurity. In the LMTO method the host Green
function is calculated from the band structure of the pure crystal within the atomic
sphere approximation (ASA), i.e., the crystal volume is approximated by slightly
overlapping atom centered spheres, inside which the potential is made spherically
symmetric. Additional “empty” spheres are introduced at the tetrahedral intersti-
tial sites [5]. In this paper we choose all spheres to have the same size determined
by the experimental host lattice constant. In the calculations we have used the
“standard” basis set which includes partial waves of s, p, and d character on each
atomic and interstitial site to give a total of 36 LMTO orbitals per unit cell. The
unperturbed Green function is calculated with the tetrahedron method using 95%
points in the irreducible wedge of the Brillouin zone.

In the LDA approximation the fundamental gaps of semiconductors gener-
ally are computed 50-100% too small. This has a significant impact on defect
calculations, in particular on the energy level positions of bound states in the gap.
To overcome this problem we have shifted rigidly the conduction bands upwards
to match the experimental minimum rap (the “scissors operator”).

The LMTO Green function method describes a single impurity in an infinite
crystal. Consequently, defect level positions are determined exactly, but relaxations
of the neighboring atomic positions are not allowed for.

The results for aluminium vacancy and for nitrogen antisite are compared
to the calculations using supercell approach and full-potential LMTO (the second
method) with lattice relaxation included. In this case calculations are carried out
in a 32-atom supercell. To find the minimum energy configuration for the given
defect, we allowed all the surrounding atoms to relax, fixing the coordinates of the
defect atom, and presuming the same symmetry of the defect as in the unrelaxed
case. The finite size of the supercell causes the impurity states to broaden, and the
level positions must be determined from the centers of the impurity bands, which
leads to some uncertainty.

3. Positions of the defect levels

The energy gap of AIN in the zinc-blende structure as calculated by us is
equal to 6.1 eV. The resulting energy levels of native defects in AIN are shown
in Fig. 1. The vacancies, the anstisite defects and isolated interstitial atoms at
two inequivalent tetrahedral positions are considered. For the aluminum vacancy,
Vai, and for the aluminum antisite, Aln, both neutral and charged states are
considered.
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Fig. 1. Energy levels of native point defects in AIN.

Va1 in the neutral charge state is a triple acceptor, with a level close to the
valence band, which can be filled with three more electrons, introducing a set of
levels ranging from 0.6 eV to 1.9 eV above the valence band edge. According to
the present calculations the a; (s-like) state of Vi lies at 1.7 eV above the valence
band edge, whereas the t5 (p-like) state, occupied by one electron, lies at 5.7 eV
above valence band.

Aluminum antisite, Aly, introduces a set of levels in the band gap, ranging
from 2.4 eV to 3.8 ¢V above the valence band edge. For the neutral charge state
the triplet state in the band gap (situated at 2.4 eV) is occupied with four electrons
(double acceptor). The neutral nitrogen antisite defect, Naj, introduces a doubly
occupied a; state at 2.5 €V above the valence band maximum and an empty triplet
at 3.0 eV.

For substitutional defects, the local topologies of the zinc-blende and wurtzite
lattices are the same, since in both cases each atom has four first neighbors with
tetrahedral symmetry. This is why the electronic structures of vacancies and anti-
sites in both structures are very similar. The difference between the two structures
begins at the second shell of neighbors and consequently, the local topologies of
interstitials are quite different in the two lattices. In zinc-blende crystals there
are two interstitial sites with tetrahedral symmetry, surrounded by four cations
(1 in Fig. 1) or four anions (i2), respectively. In our calculations for the zinc-blende
structure we have found that the defect states corresponding to positions (i1) and
(72) of ar. interstitial aluminum atom are very close, giving rise to a shallow s-state
at 5.7 eV and 5.9 €V above the valence band edge, respectively.

For the N interstitial the s-states are lying at 0.4 ¢V (¢1) and at 1.8 eV (¢2)
above valence band, whereas ¢; states, occupied by three electrons, are lying at
1.4 €V and 1.9 eV above the valence band maximum, for positions (i1) and (z2),
respectively.
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4. Lattice relaxation

The supercell calculations by using full-potential LMTO [6] were performed
for aluminum vacancy, Vi, and for nitrogen antisite, Na1. Applying this method
we were looking mainly at the atomic geometry. In both cases we have found
the outward relaxation around defect. For V1 the bond distance to the nearest
neighbors is increased by 5.4%, i.e., from the ideal value of 1.89 A to 1.99 A.
Looking at the defect level position, we get about 0.5 eV (center of the impurity
band) for the neutral charge state without relaxation, in good agreement with
the result from the Green-function calculations (0.6 V). The relaxation induces
a downward energy shift of about 0.2 eV. For N the outward displacement of
the nearest neighbor nitrogen atoms is 1%, i.e., bond length between defect and
surrounding atoms is now 1.91 A. The unrelaxed level position is about 2 eV, -
somewhat lower than that one obtained by Green-function method (2.4 ¢V), and
practically does not change when relaxation is included.

Comparing the above results with the supercell calculations for GaN made
by pseudopotential method {7,8], we can see that the relaxation around defect
is very similar in the case of cation vacancy (for Vg, in GaN — the outward
displacement of the nearest atoms is also 0.1 A [8]). In the case of Nga the bond
distance to the nearest neighbors is reduced by 29% [7], while, as results from
the present paper, for Na) the relaxation is outward and small. The above drastic
difference can be explained by the fact that relaxing all the surrounding atoms we
fix the coordinates of the defect atom. The relaxation of the defect atom position
will be the next step of our calculations.

5. Summary

We have calculated the energy positions of all native point defects in cubic
AIN. Comparing the present results for AIN with the earlier calculations for GaN
[9], we can see that there are very similar tendencies in the positions of vacancies
and antisites in GaN and AIN, although the absolute values are different, mainly
due to the different values of the energy gaps. Looking at atomic geometry we
have found outward lattice relaxation around Vi, very similar as in the case of
Vaa [7], and very small outward relaxation in the case of Ny.

This work was partially supported by the Committee for Scientific Research
grant No. 2 P03B 178 10.
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