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The energy spectrum and the wave functions of a shallow donor placed
at the center of a spherical quantum antidot are computed within the effec-
tive mass approximation. The wave {functions for discrete bound states and
for continuum states are obtained in a closed form. We show that, due to
the local potential of the microstructure, resonances occur in the continuum.
Their energies are close to those of hydrogen-like levels lying under the top
of the barrier when the quantum antidot radius is large as compared to the
effective Bohr radius. The lifetimes of the resonant states and the oscillator
strengths for optical transitions from the ground state are computed. We -
show how the energy spectrum and the oscillator strengths depend on the
antidot parameters.

PACS numbers: 73.20.Dx, 78.66.—w, 71.55.—

Zero-dimensional microstructures, known as quantum dots (QDs) confine
electrons and (or) holes inside a small region. The lack of translational symmetry
produces atom-like discrete levels, whose energies can be varied just by changing
the QD diameter. Like for real atoms, one can expect to obtain information about
these energy levels by studying the optical transitions. In a previous paper [1]
we have presented theoretical results of electron states in a spherical QD. We
have shown that QD structures produce not only discrete levels but also resonant
states in the continuum. Their positions and energy widths depend on the well size
and on the values of the confining potential. There is a correspondence between
bound and resonant states. As the radius of the QD decreases, the bound states
continuously transform into resonant states and a critical value of the radius for
this transition can be found for each state.

The Coulomb potential alone does not produce any resonances in the contin-
uum. However, if it is complemented with the potential of the dot, resonant states
appear. In the case of superimposed Coulomb repulsive potential (which can be
given, for example, by a compensated acceptor), the resonances are very narrow
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and are of the type considered by Breit and Wigner [2] for a decay in nuclear
physics. In the case of the Coulomb attractive potential of a donor inside the dot
the resonances are much wider. But they still play an important role in the in-
terband optical transitions. For example: with decreasing dot radius the oscillator
strength for the transition from the ground to bound excited states falls down to
almost zero and is transferred to the continuum when the first p-type resonant
state appears.

In this paper we study another possibility, when superposition of the po-
tentials of the donor and the zero-dimensional structure leads to appearance of
resonant states. This is the case of a donor inside an antidot. As in the previous
paper [1], we use the effective mass and spherical approximations and carry out
the calculations of the continuum states within standard quantum mechanics scat-
tering theory. The analytical solutions of the effective mass equation inside and
outside the quantum antidot (QAD) are given in terms of spherical harmonics and
Kummer functions. The QAD potential is given by: U(r) = Uy, for r < R and
U(r) = 0, for r > R, where R is the antidot radius. The appropriate boundary
conditions give the discrete levels and the solutions in the continuum as well. The
resonant state energies are obtained from the phase shift between incoming and
outgoing spherical waves. We use the effective rydberg (Ry*) and the effectlve
Bohr radius (a*) as the energy and length units.

In Fig. 1 we present the dependence of the energies of the states on the QAD
radius (R) for the potential barrier equal to 3Ry*. As can be seen for very small R
the energies of the bound states are very close to the hydrogen-like ones, because
the potential of QAD corresponds only to a repulsive central-cell correction to the
impurity potential. When the radius increases the bound state, wave functions are
pushed away from the center by the antidot potential and the binding energies di-
minish to zero for a very large QAD. At the same time resonances in the continuum
appear. Their energies fall down at the beginning. When the radius is increased
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TFig. 1. Energies of donor states in spherical QAD with a potential barrier Up = 3Ry*.
The lower states correspond to the total momentum quantum number I = 0, 1, 2. The
energy values £ > 0 correspond to resonant states in the continuum.



Bound and Resonant States of Shallow Donors . .. 745

1.5

S0l

®r o

st

@ 05

‘c s

A

>‘0.0

=

205

1T} /
-1.0} 4

1 21212l 1 a2 2322l

e
-

1
R [units of a")

Fig. 2. The same as in Fig. 1, but for QAD potential barrier Uy = (1/2)Ry*.
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Fig. 3. Computed spectra of transitions from the ground state (I = 0) to the excited
p-type bound and continuum states of the QAD with Us = (1/2)Ry*. Results are pre-
sented for three different antidot radii. The energies refer to the ionization limit.

to the value about la*, the energy of the first s-type (I = 0) resonant state reaches
the minimum value and then it increases tending to the energy value of Uy — 1Ry*,
which corresponds to the hydrogen-like binding energy below the top of the QAD
potential. Also the other resonant states acquire the hydrogen-like Up — 1/n%Ry*
energies below the top of the QAD barrier for large radii. We have checked that
the widths of the resonances diminish to very small values when R > 10a*. There-
fore, we can define them as hydrogen-like states in the large » limit. The wave
functions of the bound states and the localized part of the wave functions of the
resonant ones lie in the separate space regions. Hence the cross-sections for opti-



746 R. Buczko, F. Bassani

cal transitions from the ground to the resonant states are close to zero. In order
to obtain a bigger transition probability the QAD potential must be lower than
1Ry*. In Fig. 2 we present the results for Uy = (1/2)Ry*. We can see that in this
case the energy of the lowest s-type resonance falls down below 0, that is in the
region of bound states. In the intermediate radius region the ground state wave
function is localized partially inside and partially outside the antidot. For large
radius, the ground state energy tends to the value of —(1/2)Ry* and the ground
state wave function is totally localized inside the dot. This behavior influences the
optical properties of QAD. We present in Fig. 3 the calculated oscillator strengths
of optical transitions for three different QAD radii. For R = 2a* we observe dis-
tinct transitions to bound states and rather weak transitions to the continuum.
For R = 5a* the transitions to the continuum are much stronger and for R = 12a*
all the oscillator strength goes to the well defined hydrogen-like resonances. The
presented case of the antidot with the small potential barrier can be realized within
the GaAs/Gaj_zAl; As structure for a very small Al composition z = 0.33%.

Similarly to the case of a donor inside QD, we can distinguish two asymptotic
regions (small and large antidot radii) with hydrogen-like states. Ilowever, in QAD
the states in the barrier are rcsonant and there is no correspondence between
bound and resonant states. Only if the barrier is small enough (Up < 1Ry*) and
the antidot radius is equal to a few elfective Bohr radii, we can observe optical
transitions to both type of states.
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