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SCATTERING OF EXCITONS BY PHONONS
IN QUANTUM WELLS*
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A method to describe the effects of the exciton-optical phonon in-
teraction is presented using the cumulant expansion approximation. The
functional-integral technique of coherent phonon states is used in order to
justify the commonly used model Hamiltonian and generate the proper per-
turbation series. The influence of the mutual electron—hole screening on the
polaronic effects in quantum wells is analyzed.
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1. Introduction

The most prominent features in the band-toband optical absorption spectra
in semiconductor quantum-well systems are related to excitons. Consequently, it
is very important to understand the influence of the exciton-phonon coupling on
the excitonic line shape. In ionic crystals usually the polar interaction of charged
particles with longitudinal optical phonons plays the dominant role. Such coupling
however, should be very small for small excitons in which both charges are con-
fined to a very limited region in space, effectively screening each other. In the
opposite limit of large exciton radius, the coupling of both particles with phonons
is more or less independent leading to stronger renormalizations. The transition
between these two regimes is set roughly by the relationship between the exciton
and individual polaron radii. In tlis article we extend the cumulant expansion
method which was previously employed for the single particle case [1] to excitons
in quantum wells.

2. Exciton polaron Hamiltonian

According to the linear response theory the absorption spectra in the vicinity
of the energy gap in semiconductors is determined by the electron-hole pair cor-
relation function, which for the imaginary time is represented by the time ordered
product
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of the pair annihilation and creation operation Α(1'2') _ ψ†(1')ψ(2') and A† (12)
ψ†(2)ψ(1) at times τ' and τ respectively, expressed in terms of the electron creation

and annihilation operators ψ† and ψ.
The expression for Ρ(1'2',12) may be written in the path integral form with

respect to the phonon coherent states b*q and bq:

where the effective action for phonons is taken in the harmonic approximation as

and ς(1'2',12, b*qbq) denotes the electron-hole pair correlation function for the
particular path b q(τ). Thus Eq. (2) describes an averaged pair correlation function
over all possible evolutions of the phonon system, precisely as in the polaron theory.

The linearized equation for G in the mean field approximation corresponds
to the evolution of an exciton in the time dependent potential due to phonon
fluctuations. The corresponding Hamiltonian consists therefore of a part for the
unperturbed exciton at 1attice equilibrium and of the exciton-phonon coupling
term which is treated as a perturbation. Using the path integral representation of
Eq. (2) one can easily generate the perturbation series expansion for P. It turns
out that the identical series is generated assuming that the pair operators A and
A† represent bosons in the Hamiltonian

which can be treated as an effective exciton—phonon Hamiltonian only under the
assumption of zero occupancy for excitons [2]. We have here specified to the
quantum-well situation in which an exciton state with energy Epα is fully char-
acterized by the total momentum p parallel to the quantum-well plane and the
internal quantum state label α. The last term in Eq. (4) describes the interac-
tion of excitons with bulk phonons and it is obtained from the three-dimensional
Fröhlich Hamiltonian by taking expectation values with respect to the envelope
functions in the direction perpendicular to the quantum-well plane [1].

3. Spectral density function
The probability of generating an exciton in the state α and with the total

momentum p = Ο by absorbing a photon of frequency ω is proportional to the
spectral density function

where the retarded Green function Ραret(ω) is obtained from the Fourier transform
of its temperature counterpart defined in Eq. (1) by the standard procedure of an-
alytic continuation in the complex frequency plane [3]. It can be also obtained by
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solving the appropriate Dyson equation with the proper, retarded self-energy func-
tion. Unfortunately, the perturbation series expansion for the self-energy function
is very difficult to obtain and, in most cases, converges very slowly. The situation
can be improved by applying the cumulant expansion verified previously in single
polaron problem in three dimensions [4]. Using the lowest order expression for
the retarded self-energy function Σα(1)(ω) and neglecting its off-diagonal matrix
elements we arrive at the following expression:

The resulting Green function contains contributions to infinite order in the coupling
constant. Such a procedure has proper limiting behavior for infinitely large mass
of excitons and yields a reasonable description of multi-phonon processes for the
finite mass.

4. Results and discussion

From the shape and position of the excitonic absorption line determined from
the spectral density defined in Eqs. (5) and (6) one can infer the renormalization
of the exciton energy and the lifetime for a particular state α. Due to the com-
posite nature of excitons we expect that these characteristics should depend on
exciton structure. The fundamental parameter in this case is the exciton radius.
We have accordingly evaluated the exciton ground state energy renormalization as
a function of exciton radius. The results plotted in Fig. 1 were obtained by vary-

ing the radius of the hydrogen-like excitonic wave function assuming all the other
parameters for GaAs/GaAIAs lattice matched quantum-well system, in the limit
of infinitely narrow well. The value of the energy shift quite rapidly reaches the
saturation value marked by the horizontal dotted line, corresponding to the limit
of decoupled electron and hole. In fact, this transition to the independent polaron
situation should occur much faster in the quantum wells due to the confinement of
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charges, which generally amplifies the polaron effect. Thus the mutual screening
of the electron and hole charges is much weaker in the quantum well than in the
absence of confinement. The results presented in Fig. 1 are particularly sensitive
to the method of approximation for the sum over flnite states for exciton ioniza-
tion processes. We have employed the technique suggested in Ref. [5] corrected
by multiplying the final result by the factor of ( √mh +√me)√mh +mein order
to compensate for the systematic error introduced by that approximation. Similar
factor is then applied to the imaginary part of Σ in the cumulant expansion (5).
The resulting curve for the spectral density function using the same set of pa -

rameters is presented in Fig. 2. According to our model the main excitonic line is
asymmetric and has phonon satellites separated by the LO phonon energy. Even
though the exciton has flnite mass and recoil effects should lead to smearing of

• such structures, one can easily distinguish at least one satellite on each side of the
line at T = 300 K.

5. Conclusions
We have formulated exciton—polaron problem using the path integral for-

malism which allowed to generate a well-defined perturbation expansion for the
exciton-phonon interaction. By applying the ćumulant expansion we were able
to model the excitonic line shape function. We have studied the transition from
tightly bound to decoupled electron-hole pair regime in the typical quantum-well
system. The spectral density function for the main absorption line for excitons is
asymmetric and has phonon satellites similarly as in the case of localized exciton.
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