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This article provides an elementary introduction to the physics of the
Luttinger liquid and summarizes its basic properties, as well as discusses
examples, where such quantum liquid would be or has been observed exper-
imentally. A comparison with the Fermi-liquid state is made
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1. Introduction

In many three-dimensional fermionic systems their normal-phase properties
are rather well described by the Landau-Fermi liquid theory. Numerous exam-
ples of such systems include: liquid 3He, simple metals, nuclear matter, neutron
stars [1]. With some modifications, this theory encompasses also correlated metal-
lic systems such as fermions close to the Mott localization or heavy fermions. On
the other hand, recent progress in technology allowed us to synthesize systems
which are effectively quasi two or quasi-one-dimensional. For example, semicon-
ductor heterostructures exhibiting fractional quantum Hall effect (FQHE) and
high-temperature superconduction are twodimensional metallic systems, whereas
organic superconductors, inorganic salts, quantum wires, doped polyacetylene,
edge excitations in FQHE systems are effectively one-dimensional structures dy-
namically [2]. Hence, most of the physical properties of the systems in lower
dimensions are very unusual and almost impossible to understand within the
Landau-Fermi liquid picture.

From the theoretical point of view, it is well established [2] that in one-di-
mensional systems of interacting fermions the Fermi liquid theory breaks down and
the low-temperature properties of such metals are described by the Luttinger liq-
uid. Probably, the edge excitations in FQHE heterostructures are the best known
experimental realization of one-dimensional Luttinger liquid [3]. However, there
is still an open question whether the interacting fermions in two dimensions can
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be described by the Fermi liquid theory or else, new ideas must be developed in-
volving a multidimemsional Luttinger liquid theory. Unusual physical properties
of high-temperature superconduction in the normal state support the latter op-
tion [4].

In this contribution we present an elementary introduction to the Luttinger
liquid theory in one and higher space dimensions. Of course, it will not be an
exhaustive survey of this theory. Our purpose is to characterize the simplest and
the most important similarities and differences between the Fermi and the Lut-
tinger liquids. More comprehensive studies of these problems might be found by
the reader in the recent review article [2], and the references cited therein.

2. Landau-Fermi liquid theory

We start with a discussion of the Fermi liquid theory along the line in-
troduced by Landau [5]. He made two principal assumptions: (i) the interacting
fermions in the ground state have the same symmetry as the ideal Fermi gas;
and (ii) the low energy excitations of the interacting system can be labeled with
the same quantum numbers as the energy levels of free gas. Physically, the first
assumption means that we are dealing with interacting fermions in their normal
state, with a well-defined Fermi surface at T = 0. In other words, there is no phase
transition in a system and the low-energy excitations are gapless (infinitesimally
small amount of energy is sufficient to create them). The second supposition tells
us that excitations of the system have charge e and spin σ.

In order to introduce a concept of quasiparticle we must note that the
low-energy spectrum does not depend on details of the interaction. Starting from
an ideal gas of fermions we turn on the interaction so slowly that the system
evolves adiabatically into a correlated state. And, eventually, this correlated state
of physical fermions (electrons) can be equivalently described by a system of weakly
interacting quasiparticles, which have the same quantum numbers as the initial
particles. But one must bear in mind that the quasiparticles are not real electrons
of the interacting system. They are interpreted as one-particle excitation quanta
of the Fermi liquid and are introduced theoretically in order to describe the system
of correlated electrons in a simple manner. Of course, real experiments are carried
out on true electrons in the correlated state which, as we interpret sometimes, are
dressed with a cloud of interaction and resemble quasiparticles (or vice versa, a
quasiparticle looks like a dressed electron).

In the light of our above discussion, quasiparticle can be deflned as follows:
this is an exact low-energy elementary excitation of the Fermi liquid which has
the properties of a real electron but its dynamical characteristics are codified and
include all of the high-energy effects of the interaction.

The Landau assumptions imply that:  (i) the entropy of the system is the
same as that of a Fermi gas; (ii) the total number of quasiparticles is equal to the
number of electrons (charge conservation); and (iii) the ground state of the Fermi
liquid has the Fermi surface which includes the same volume in momentum space
as that of the unperturbed system (Luttinger theorem). One can also show that
the quasiparticle momentum distribution function has the Fermi-Dirac form, i.e.



Luttinger Liquid as a New Metallic State ... 	 597

where β = 1/kT, μ is the chemical potential and (p, σ) is the dispersion relation
of quasiparticles. Landau assumed the following form of it:

where €( 0 )(p, σ) is the dispersion relation for free particles, δn(p, σ) is a departure of
the momentum distribution function of quasiparticles from that for noninteracting
fermions and is supposed to be small. Finally, fσ σ '(p , p') is a Landau interaction
function which describes all of the effect8 of scattering between the quasiparticles.

The Landau—Fermi liquid theory can be derived microscopically using one
of the theoretical tools such as: the quantum field theory, the renormalization
group, or the multidimensional bosonization. In fact, those methods are also use-
ful in studying non-Fermi liquid systems. Their basic purpose is to determine the
correlation functions, which provide information concerning the physical proper-
ties of the system. The most important correlation functions are: the one-particle
(the propagator) and the two-particle (the four-point amplitude) Green functions.
The propagator gives us all information on the single-particle operators, the par-
ticle distribution function, and the dispersion relation. On the other hand, the

two-particle Green functions contain all information on the bosonic excitations in
the system, the Landau interaction functions, as well as concerning other response
functions needed in studying the transport properties of interacting particles.

In the following we briefly summarize the basic properties of the Landau—
Fermi liquid theory. First, there is a sharp Fermi surface at Τ = 0 where the
electron momentum distribution function has a discontinuity. The jump of the
distribution function is equal to Z (0 < Z < 1). The low-energy elementary exci-
tations of the system are quasiparticles of charge e and spin 1/2. Their dispersion
relation is visualized as the poles in the one-particle Green function, which has the
universal form close to the Fermi surface, namely

Gincohdescribes the incoherent part of the spectrum and, in the present limit, is
usually negligible. Here, Z is interpreted as a renormalization of the electron wave
function. The lifetime of quasiparticles is finite and is given by τ-- = γ(ω,Τ) =
α(ω = (F) 2 + bΤ2 , where αn and b are constants, and εF is the Fermi energy. Note
that at Τ = 0 quasiparticles on the Fermi surface have an infinite decay time. In
the time domain the one-particle propagator has the following form:

It oscillates with characteristic frequency ε(p) but also decays in time exponentially
For the excitations very close to the Fermi surface the damping is very

small and then, the quasiparticles are well deflned. Another important quantity
is the spectral density function A(p,ω) = — 1/π ImG(p, ω), which is equal to the
probability that the one-particle excitation decays into eigenstates of the system.
For an ideal gas A(p, ω) δ(ω - ε(p)), whereas for the Fermi liquid it has a sharp
peak (of finite width ~ γ) close to the Fermi energy.
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The next very important feature is that the Fermi liquid supports the bosonic
excitations of zero energy (the zero sound, the spin waves, etc.) which can be
visualized as the singularities of the four-point correlation functions. As a result,
the physical properties of the Fermi liquid for Τ — Ο are: (a) the linear specific
heat is C ~ ΓFLΤ, where ΓFL is proportional to the density of states at the Fermi
energy; (b) the magnetic susceptibility is χ const + DΤ2 ; (c) the dc resistivity
is p AT2 + pres + pph, where ρres is the residual part due to impurities, and Pph
is the phonon part; (d) the Hall coefficient RH = 1/nec does not depend on the
temperature.

We must emphasize that all the properties discussed so far are universal for
all Fermi liquids and do not depend on details of the microscopic interaction.

3. Haldane—Luttinger liquid theory

Properties of interacting fermions in one spatial dimension are completely
different from those in three dimensions. This is because the concept of the Fermi
liquid is not applicable, since the electron-like quasiparticles do not exist [2].

In difference with higher dimensions, there are whole classes of one-dimen-
sional models of correlated fermions, which can be solved exactly using the Bethe-
-ansatz wave function [2]. For example the Hubbard model, the Heisenberg model,
the supersymmetric t-J model, and their modifications including e.g. long-range
hoppings or interactions. It is also possible to compute the long-time and large-dis-
tance correlation functions using asymptotically exact methods such as the boson-
ization transformation or the conformal fleld theory. By an asymptotically exact
solution we mean the solution, which is rigorous'at low energy (at low temperature)
and at large distances. In that case. only the long-wavelength fluctuations affect the
system physical properties. Actually, the Landau—Fermi liquid is such an effective
(asymptotically exact) theory.

In order to study correlated electrons in one dimension we start from the
Tomonaga-Luttinger model. Namely, Tomonaga considered electrons moving along
one-dimensional chain and assumed that their dispersion relation can be linearized
close to the Fermi level. He introduced a cut-off (a band width) to limit the energy
interval in which this approximation is valid. Later on, Luttinger started with a
system of electrons with the linear dispersion relation, ranging from minus to plus
infinities. The Hilbert space of such system is unbounded from below and there
must be an infinite number of electrons piled up to the Fermi level. However, the
spurious states do not affect the system low-energy properties. But, on the other
hand, this kind of dispersion relation allowed him to formulate the noninteracting
fermionic Hamiltonian (for particles at each branch +kF and -kF separately)

in terms of bosonic density fluctuation operation

It can be shown that the spectra of these two Hamiltonians are exactly the same.
The advantage of this reformulation is that we.can add to the latter Hamiltonian
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an interacting part containing forward scatterings between electrons, which also
have the form of the density-density fluctuations, i.e.

The total Hamiltonian Η = H0 + Ηint is bilinear in terms of density fluctuations
operators and, therefore, it can be diagonalized exactly.

The properties of the Tomonaga—Luttinger model (and other models related
to it) were investigated by many authors [2]. The most general feature is that the
one-electron Green function has the form

which proves that: (i) there is no electron-like quasiparticle (no single poles but
only the branch cuts with an anomalous exponent α); (ii) the spin and the charge
degrees of freedom are separated (i.e. we encounter two Fermi velocities with
4 ψ 4). Also, those studies showed that in one-dimensional systems an arbi-
trarily weak interaction destroys the Landau—Fermi liquid picture. In other words,
such correlated systems cannot be obtained through an adiabatic evolution from
the corresponding noninteracting gases.

We will discuss next a possibility of having a non-Fermi liquid in dimensions
greater than one. In order to have such behavior in the normal phase it is nec-
essary to have a singularity in the effective (Landau) interaction in the forward
direction [6]. The physical origin of this singularíty is widely discussed in the cur-
rent literature. In order to investigate the basic properties of a non-Fermi liquid
in two or three spatial dimensions we chose another route in our work [7]. Namely,
we assumed at the beginning some form of the singular effective scattering ampli-
tude between electrons of opposite spins and solved such model with the aid of
the multidimensional bosonization technique. More precisely, our Hamiltonian has
the following form:

where T and S label the separate points of the Fermi surface, n S is the normal
vector to the Fermi surface at point S, vF is the Fermi velocity, and f ' (S, T, x)
is the scattering amplitude. The f ↑↓(S,S, x)part of the interaction is singular
in the thermodynamic limit, and the remaining regular parts were neglected for
simplicity. Such assumption leads to the spin—charge separated Luttinger liquid
in arbitrary spatial dimensions. For example, we find that the Green function has
the form
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where vF s = VF ±0 are two different velocities and indicate the spin-charge decou-
pling. Of course, there are no quasiparticles with spin σ and charge e. However, as
we noted [7], it is possible to describe this system in terms of new pseudoparticles,
i.e. holons and spinons, which have fermion-like properties (e.g. the commutation
relations). They are the quanta of elementary excitations of this strongly correlated
system and carry the charge e and the spin σ separately. As a result, the starting
Hamiltonian (2) can be rewritten in the new (spinon-holon) representation in the
following noninteracting Hamiltonian:

The two fermionic Hamiltonnians (2) and (3) have the same energy spectrum.
However, the Hamiltonian (3) is very simple because it describes two ideal gases
of holons and spinons. Additionally, we considered this model with an external
magnetic field h, which produces the spin splitting of the carrier states. In any
model with the spin-charge separation the presence of the magnetic field makes
the situation more involved because it introduces a nontrivial interaction between
the spinons and the holons. However, as we observed, such system can still be
solved exactly. As a result we found the one-electron Green function

are the new characteristic Fermi velocities in this system (note their dependence
on h). Also, the anomalous exponents

are functions of h. What is very surprising, we identify again the two new pseu-
doparticles except now, they have a fractional charge and a fractional spin.

The two models discussed briefly above provide examples of exactly solvable
models, for which the correlated electrons do not resemble the Fermi liquid, al-
though they still possess the Fermi surface obeying the Luttinger theorem. Follow-
ing the suggestion due to Haldane, such fermionic systems are called the Luttinger
lquid. In the next part we briefly characterize it.

The general definition of the Luttinger liquid can be of the following form [8]:
it is an effective state of interacting fermions possessing Fermi surface (at Τ = 0)
with volume obeying the Luttinger theorem, and for which there exists either an
anomalous scaling of the spectral density function close to the Fermi surface (i.e.

A(Λy1(k — kF),Λy2ω) = ΛyΑΑ(k -kF,»),where yi are arbitrary real numbers),
or the spin-charge separation (i.e. vFc≠v'). Note that the Landau-Fermi liquid
represents special limit of the Luttinger liquid, i.e. if we have y1 = 1(2 = - I/A = 1 ,
and v' = 4.
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The very important properties of the Luttinger liquid is the absence of a
discontinuity in the momentum distribution function, i.e. very close to the Fermi
surface we have that

In other words, the renormalization factor Z of an electron wave function vanishes.
In the Luttinger liquid of dimension d > 1 the representative form of a

one-electron Green function may be taken as [9]:

where ω is a cut-off (an energy scale within which this ansatz is valid), g(α) is a
normalization constant, Cc and εs are respectively the holon and the spinon dis-
persion relations, and α is the anomalous nonuniversal (depending on interaction)
exponent. Here, there are no single poles (in distinction with the Fermi liquid
Green function (1)), which means that there are no electron-like quasiparticles.
Also, the time behavior of (4) is very different from that of (1), namely

i.e. it decays according to the nonuniversal power 1aw even for k = kF! Likewise,
the spectral density function has a nonuniversal.power-law singularíty at the Fermi
surface A(kF ,ω) ω|2α-1, whereas far away from the Fermi surface it splits
up into two singularities with a wide incoherent background in between. As a
result, the density of states of the Luttinger liquid at the Fermi level is zero, i.e.
p(ω) |ω| 2 α forω --0 .

Physical properties of the Luttinger liquid are as follows: (a) linear specific
heat, C - ΓLLT where now ΓLL 1/v° + 1/vs, (b) magnetic susceptibility χ ti
const + dΤ2 , (c) resistivity p ti ΑΤ1±ε + p res + pph , and depends on the details of
the interaction strength via ε.

4. Concluding remarks

The theory predicts that in a strongly correlated electron system the Fermi
liquid picture may be invalid. In its place, a new quantum (Luttinger) liquid could
emerge with very unusual physical properties (note the anomalous scaling and the
spin-charge separation).

The possibility of the Luttinger liquid appearance in physical systems is
very exciting and poses some important questions. The Luttinger liquid behav-
ior was observed in tunneling experiments between edge excitations in the het-
erostructures with FQHE [3]. Also, one-dimensional organic metals have spectral
properties in agreement with the theory of Luttinger liquid [2]. However, there is
still a heated debate in the literature related to the question whether electrons
in quasi-two-dimensional high-temperature superconductors form the Luttinger
liquid or not. We think it is crucial to understand their novel physics.
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