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A model is devełoped by extending the generalised form of exponential
potential known as extended generalised exponential potential to account for:
(a) a realistic realization of interactions in alł separations in general and that
of small separations in particular, (b) three-body and electronic effects into
the interaction in an alternative and simpler form, (c) a model free from usual
fitting procedure. The model is employed to compute the cohesive energy,
phonon spectra and second- and third-order elastic constants for group VA
bcc metals V and Nb. The computed results showing good agreement with
the experimental findings lend reliability and credibility to the potential.

PACS numbers: 63.20.Dj, 62.20.Dc

1. Introduction

The lattice dynamical behaviour of transition metals has been studied on
the basis of two different approaches, i.e. pseudopotential and phenomenological.
The former studies [1-4] involve huge computation and various simplifying as-
sumptions for discussing the crystal dynamics of non-simple metals. These model
potentials require further modifications with respect to their non-centrality and
dielectric functions for yielding a good comparison between the computed and ex-
perimental dispersion data. The later studies [5-8] of these metals suffer from the
deficiency of lattice instability and use extensive fitting procedures. Not only this,
the first principle theories [9-11] to study the lattice dynamics of transition metals
make use of drastic approximations to arrive at useful conclusions and increases
computer time many times. A non-central force model with six input data has
been employed by Rathore [12] to predict the phonon dispersion in bcc vanadium.
Khanna and Rathore [13] have used simplified forms of Fielek model [14] to dis-
cuss the phonon dispersion in bcc niobium witI the same number of input data.
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Both the studies [12,13] make use of the elastic constants and the zone boundary
frequencies as input data, introducing relative standard error. Recently, Singh et

al. [15] have proposed a temperature dependent pair potential for discussing tle
lattice vibrations in bcc V and Nb, which is basically a deficient Heine-Abarénkov
(HA) potential.

Vanadium (Z = 23) and niobium (Z = 41) are the first and the second
transition elements of group VA in bcc phase with outer electronic configurations
as 3d34s 2 and 4d35s2, respectively and exhibit variable valency. The presence of
electrons occupying the d-shells in non-simple metals like V and Nb makes their
lattice dynamical behaviour interestingly complicated and stresses on the impor-
tance of the inclusion of short and long range electron response to the ionic motion
in the central pair-wise potential. The displacement of cores and shells gives rise
to mecIanical polarization resulting in the paired interactions of central type.
These interactions being short-ranged effectively couple the cores and the shells.
Secondly, during a lattice vibration, the electron shells around each core get de-
formed due to tleir overlap leading to s-d hybridization and this in turn alters
their charge density distribution, which gives rise to unpaired or three-body forces,
as pointed out by Bertoni et al. [16]. The non-orthogonality associated with the
overlap of electron wave functions and quantum mechanical treatment of overlap
interactions also suggest the unpaired nature of these interactions which are quite
dominant between the d-shells in these metals. The s-d hybridization in transition
metals has also been explained on the basis of Ziman's resonance model [17] in
the / = 2 phase shift. The extended generalised exponential potential (EGEP) has
earlier explained [18] successfully the implications of hybridization in tlorium and
is capable to explain s-d hybridization in d-band metals, which requires a repul-
sive term with exponential character in the interaction potential, as pointed out
by Moriarty [1].

The present communication derives an empirical potential, which is an ex-
tension of the generalised exponential potential, known as extended generalised
exponential potential and explains almost all the characteristic features of the
interatomic interactions such as

(i) Tle broadening and shifting of centre of the bands results into the anitable
• changes [19] in the attractive and repulsive interactions. The corresponding

elements of the potential are properly formulated to account for the effective
inclusion of these forces.

(ű) The electronic exchange and correlation effects, which introduces the sub-
stantial change [20] into the width and depth of the potential, have been
accounted for in an alternative form through a parameter m and therefore
properly substitutes for dielectric screening functions [21].

(iii) The role of the three-body forces such as volume forces [22] has been ef-
fectively expressed in an indirect manner through a parameter n, because
this parameter affects [23] the position as well as the depth of the potential
minima.

(iv) It accounts effectively for the characteristic feature of a steep rise of Coulom-
bic repulsion at small separations.
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The potential has earlier explained [24] successfully the elastic and dynamical
behaviour of fcc metals. The present paper aims to investigate the elastic and
dynamical behaviour of bcc vanadium and niobium.

2. Theory

2.1. Extended generalised exponential potential

The attractive as well as the repulsive components of the generalised expo-
nential potential [25] have been extended for representing their true and realistic
nature. Extended generalised form of exponential potential so developed assumes
the form

where m and n are the parameters which .take care of electronic exchange and
correlation effects and the three-body forces such as volume forces in an alternative
and simpler form respectively, D is the dissociation energy, α — the hardness
parameter and r 0 — the equilibrium separation parameter and r is the distance
of the j-th atom from the origin given by

Equation (1) can be put in the form to represent the cohesive energy at
equilibrium semi-lattice constant (α0) as under

The three defining parameters (α, r0 and D) of the potential require for
their evaluation the precisely determined input data of equilibrium semi-lattice
constant (α 0 ) and bulk modulus (B) of the metals only. For evaluating the three
parameters function, the condition

for the equilibrium of the crystal in the absence of external forces is employed
which gives
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The parameter D can be evaluated through the expression for the bulk mod-
ulus following the condition given by Eq. (5) for stress free lattice. The following
expression for D is obtained

2.2. The second-order and third-order elastic constants

The following expressions for the second-order elastic constants (SOEC) and
third-order elastic constants (TOEC) with present interatomic interactions are
used [26]

where n' is the number of atoms per unit cell (4 for fcc and 2 for bcc) and V
represents the atomic volume.

Equation (9) transforms to represent C12 when li in the mentioned equation
is replaced by l21ι22.Similarly, Eq. (10) transforms to representC112(=C166) and
C123 (= C456 = C144) when li in the mentioned equation is replaced by 11122 and
l21l22123, respectively.

The value of SOEC C44 for the metals under study have been computed by
expanding the secular equation in long wave limits (q --> 0) and comparing with
the usual Christoffel relation.
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2.3. Lattice dynamical behaviour

The elements of the dynamical matrix having explicit bearing on Eq. (1)
may be written as

qα is the α component of phonon wave vector q, a is the lattice parameter, β1
and β2 are the force constants for the first neighbour (N) and the second near-
est neighbour (NN), respectively. It may be mentioned that the inclusion of the
first derivatives (α ιΡ , α2) of the potential deteriorates the dispersion curves in the
alloys and metals beyond repairs. For this reason, we have considered only the
second derivatives (β1 , β2) while considering the two-body contribution towards
the phonon dispersion in bcc metals.

The phonon frequencies (v) are obtained by solving the usual secular equa-
tion, i.e.

where I is the unit matrix of 3 x 3 order and Μ is the mass of the atom.

2.4. Parameter evaluation

Equation (6) is treated repeatedly fora chosen value of n and m to yield
such a value of dimensionless quantity (αα 0 ) which reproduces such values of β
and D (from Eq. (8)) which on subsequent substitution in Eq. (3) yield an exactly
measured value of cohesive energy. This proper value of αα0 is employed to evaluate
α from the measured value of equilibrium semi-lattice constant (α 0 ). The value of
r0 is evaluated using Eq. (4).

3. Computations and results

Α machine program was developed on the theoretical lines given in the pre-
ceding section and the same was fed to the computer to obtain the results given
in Tables II to V.

The input data for bcc vanadium (V) and niobium (Nb), i.e. the lattice
constant and bulk modulus are given in Table I. For a given value of parameter n,
we have computed potential parameters for four different values of m (= 1.5, 2, 3, 6)
but keeping in mind the limitations of the space, we have recorded our para-
meters in Table lI for the most suitable value of m. The present study considers
the 306 atoms extending to 16th neighbours to compute these parameters. The
computed values of cohesive energy and the evaluated derivatives β1 and β2 for bcc
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vanadium (V) and niobium (Nb) are recorded in Tables III and IV, respectively.
Figures 1 and 2 depict the computed phonon dispersion curves along with the
measured data of Colella and Batterman [27] and Powell et al. [28] for bcc V and
Nb, respectively. The computed second- and third-order elastic constants for bcc
V and Nb are shown in Table V.
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4. Conclusions

The successful prediction of cohesive energy of the bcc V and Nb bears
eloquent testimony to the efficacy of the present potential (EGEP) in explaining
all the qualitative features of phonon dispersion relations of the bcc metals like
V and Nb as well as the interactions coupling the metallic ions. This fact also
establishes the empirical nature of the potential.

The phonon dispersion curves in bcc transition metals are notoriously full
of anomalies [29]. It is only recently that these anomalies have been accounted for
in a satisfactory way [30] to some extent. Previous attempts to devise potentials
have met with a limited success [31] and it is not surprising to find discrepancies
as high as 100% between the computed and experimental phonon frequencies in
the literature. Inn this light, a comparison of the experimental [27,28] and the
presently computed phonon frequencies in the framework of EGEP and that too,
with minimum number of input data are encouraging. However, the difference of
10% to 30% between the presently computed phonon frequencies and the measured
frequencies [27, 28] can be further reduced b y explicit inclusion of appropriate
three-body forces and the suitable electronic contribution in a more direct manner.
Anyway, our results are free from the relative standard error and this fact enhances
the reliability [32] of our model.

The intimate relation of second-order elastic constants with the strength
of the metal further establishes the importance of the present study. The study
on the second-order elastic constants provides direct knowledge to the response
of metallic ions to its environment and therefore, further reveals the nature of
the resultant interactions. The computed values of second-order elastic constants
compare reasonably well with the available experimental values. The third-order
elastic constants in the framework of EGEP have been also computed.
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