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7F6 (I11g) → (Γ1g) 5D4 TWO-PHOTON TRANSITION
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Two-photon spectroscopy has expanded the scope of studies of excited
states of ions and has also enabled the examination of the validity of con-
ventional theories. In this study, the direct theoretical calculation of the
two-photon intraconfigurationa1 crystal freld transitions of 7F6(Γ1 g ) -+ 5D4
of Tb3+ in Cs2 ΝaΤbCΙ6 has been performed, based on third-order pertur-
bation theory including electric dipoles and spin-orbit coupling. The core
4f7 ( 8S7/2 Γ6, Γ7, Γ8) and 4f7 ( 6Ρ7 / 2 Γ6, ϊ7, Γ8) states coupled with
5d(Γ3, ΓΡ5) are taken as the intermediate states. The calculated transi-
tion intensity ratios are in good agreement with the experimental results.
In particular the two-photon transition 7F6(Γ1g) → (Γ1g) 5D4 is allowed
in third-order perturbation instead of the proposed fourth-order process
by Ceulemans et al. using the Judd-Pooler-Downer model. The inconsis-
tency between the two studies arises from the failure of application of the
Judd-Ofelt closure approximation. The closure approximation does not only
simplify the two-photon calculation but also sacrifrces the physical accuracy
by changing the selection rule of the two-photon transition from that of two
electric dipole transitions to that of one electric quadrupole transition.

PACS numbers: 33.80.Wz, 33.20.Kf, 33.70.Fd

1. Introduction

Two-photon spectroscopy has received considerable attention in the last few
decades. The selection rules and angular dependences are substantially different
from those for one-photon transitions [1-5], thereby providing complementary in-
formation for the further investigation of excited states and also allowing examina-
tion of the validity of conventional theories. The group-theoretical selection rules
and polarization characteristics of two-photon transitions were derived by Inoue
and Toyozawa [6] and Bader and Gold [7]. The twophoton absorption between
same paríty 4fn states can be described by second-order perturbation theory [1].
The initial state couples with the final state by two electric dipole operators via
the opposite parity intermediate levels. For simplicity, it is assumed that the in-
termediate levels belong to the configuration 4 fn -1 5d. Higher-order processes are
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necessary if the second-order contribution is ΔS # 0, ΔL, ΔJ > 2 and/or forbid-
den by symmetry selection rules between crystal field (CF) states. The transition
matrix element based on second-order perturbation theory can be written as [1]:

where | i) and |f) are the initial and final  wave functions. The sum is over all the
intermediate states |x). ħ"1 and ħω2 are the energies of two photons. ε • D is the
scalar product of the polarization vector ε of the photon and of the electron dipolar
operator D where

Axe [8] applied Judd-Ofelt closure approximation [9, 10] to simplify the calculation
by coupling the two electric dipole operators into an effective operator acting
between the same parity initial and final states. Judd and Pooler [11] showed that
spin-orbit interactions among the intermediate states could account for transitions
between different spin states. Downer et al. [1] demonstrated the importance of
crystal field interaction in which two-photon transitions with ΔL, ΔJ < 6 become
allowed. Most previous studies were limited to the Russell-Saunders limit [1,11],
and did not consider transitions between individual CF states.

Recently Denning [12] measured the one-colour twophoton absorption spec-
trum of the 7F6 — 5D4 transition of Τb 3+ in the cubic elpasolite lattice. The
intensity of 7F6(Γ1g) → (Γ1 g ) 5D4 was observed to be greater than 7F6(Γ1 g) ->
(Γ3g ) 5D4 by a factor near 14 [12], and the former transition was the strongest
feature in the 7F6 → 5D4 group of bands. Ceulemans et al. [13] followed the
Judd-Pooler-Downer formalism [11,1] by introducing fourth-order contributions
involving both spin-orbit and crystal field interactions to interpret the appear-
ance of the Γ1 g -> Γ1g transition. The general evaluation of the fourth-order
term began with triple closure over intermediate states, which were confined to
4fn- 15 d1 configurations. The two interactions provide an effective transition op-
erator enabling the transition between different spin representations and between
symmetry-forbidden states representations respectively. Such a linkage is thus im-
possible in lower than fourth order, based on the Judd-Pooler-Downer model and
the selection rules are summarised in Table I. In 3rd order spin-orbit (SO) per-
turbation, the operator representation Γ 1g only occurs when ΔJ = 0, and is due
to the scalar term of the double tensor operator defined by Judd and Pooler [11].

Considering the selection rule for CF states, it is noted that the represen-
tation of electric dipole operator in 0h molecular point group is F4u [5]. The
symmetry-allowed twophoton transitions involve the irreducible representations
contained in the direct product of the operators Γ4 u ® Γ4u, i.e. Γ1g , Γ3g , Γ4g ,
Γ5g [5]. Hence, the transition between Γ1 g → Fi g for ΔJ # 0is allowed even
when the crystal field interaction term is absent. This contradicts the findings of
Ceulemans et al. [13]. Ιn what follows we show that the Γ1g -ł Γ1 g transition can
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be accounted for by direct calculation using third-order perturbation theory, and
that the calculated transition intensity ratios are comparable with experimental.

2. Direct calculation of two-photon transition of Cs2ΝaΤbC16

In this section, we will perform the direct calculation of the twophoton
transition from the ground state of the 4f 8 configuration of Τb3+ in the elpasolite
crystal, 7F6(Γ1) to the excited levels 5D4(Γ1 and ϊ3) (the parity subscripts are
dropped in the following). Since these transitions violate the ΔS = 0 selection
rule, the third-order mechanism involving  spin—orbit coupling has to be considered.
The transition matrix element between the initial state Γi γi and final state Γfγf is
written as [1,11]:

The summation is over all the intermediate states |X) and |μ ). V is the spin-orbit
coupling operator.

The twophoton transition line strength is given as [5]:

For simplicity, the polarization of the photon parallel with the [001] crystal
axis is considered in this calculation. Experimental data concerning 4f 7 5d inter-
mediate states are sparse and we limit our calculation to the lowest/dominant
intermediate levels. These result from the coupling of the core 4 f7 ( 8S7/2 Γ6, Γ7
and Γ8) states with 5d states [14, 15]. The CF level separation of the core 857/2
is observed to be negligibly small [16]. The crystal field acting on the d electron is
stronger than the spin-orbit coupling, and the d orbital splits into Γ5 and Γ3 [17],
where Γ5 is lower than Γ3 by more than 20000 cm -1 . The orbital Γ3 state will
fnrther couple with the spin state Γ6 to give Γ8. Γ5 will split into Γ7 and Γ8 after
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the spin-orbit coupling. The separation between Γ7 and Γ8 is about 1200 cm -1 .
The wave function of the intermediate state can be written as [18]:

where Ι„ Γl and Td are the spin, orbital and spin-orbit coupled representation
of the 5d electron, and γd is a component of the 'd representation. We neglect
the electrostatic interaction between the 4f 7 core and the 5d electron, which is of
minor importance [18]. Transforming the representation ΓJ'γJι of the core state
|4f7 (S'L''ΓJ'γJ')) in terms of the JM basis

The transformation coefficients of (J'MJ' |ΓJ'γJ'), (1/2mds Γ 3γ3)and
(2mdl |Γlγl) can be obtained in Griffith's [19] or Watanabe's [20] tables. The Wigner
coefficients (ΓsγsΓlγl|Γdγd) [19,21] result from decoupling the spin—orbit coupled
state Γdγd into spin Γs and orbital Γl representations. For example, the core states

| 4f7 ( 8S7'2 Γ611)) and |4f 7 ( 8S7/2 Γ612)) can be expressed as

where —1, 0 and 1 are the 1abels of the threefold-degenerate Γ5 representation. Con-
sider the second and third degeneracy terms, the |5d Γ6γ2 Γ5 —1) and |5d Γ6γ1 /51)
are transformed as
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Hence, the wave function of the intermediate states | 4f7 ( S7/2 Γ6γ1) 5d (Γ6!5 Γ8γ2))
and |4 f7 ( 8S7/2 Γe n) 5d (Γ6Γ5 Γ8γ3)) are given as

Consider the spin-orbit coupling among the intermediate states, the operator can
be written as [111:

The spin-orbit coupling acting on the d electron of the intermediate state
| 4f7 8S7/2 5d) is equal to zero. The remaining f-electron spin-orbit operators cou-
ple the core state 8S with 6Ρ. The corresponding matrix element is [22]:

Tħe reduced matrix element of the double tensor operator can be calculated by
using the tables of fractional parentage given in Ref. [23]. The spin-orbit matrix
element is then calculated to be equal to ςf 14, where ςf = 1696 cm -1 [24]. The
wave function of the intermediate states with core 6Ρ can be written as

The initial state |4f8 ( 7F6 Γ1 )) and final state |4f8 ( 5D4 Γι)) can be trans-
formed similarly as in Eq. (6)

For example,

Expanding the JM., basis in terms of the SMSLML basis given
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Rewriting the |4f8 SMSLML) in terms of core state |4f S'MS'L'ML') and the
single f electron state |4 f 1 smfslmfl)), we lave

Finally, recoupling tle core state in terms of JMl basis given

Based on the above formalism, the representation of the initial and final states is
now expressed as a combination of core |4 f7 S'L'J, J'Μ') states in the JM basis and
of |4f 1 á m f s 3m fl) state in the sms lml basis. The values of the Clebsch-Gordan
coefficients and the basis transformation coefficients are available in Refs. [19-21].
We pick the |4 f 8 7F6 60) state in Eq. (17) as an example to show low it may be
transformed

Tle matrix element of rC1q between the component ( 7F6 60| of the initial state
(4f8 (7Γ6 Γιγι)| and the intermediate states |4 f 7 (8S7/2 Γ6γ1) 5d (Γ6Γ5 Γ8γ2)) and

| 4Ĵ7 ( 8S7/2 Γ6γι) 5d (Γ6Γ5 Γ8γ2)) are expressed as

and
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The final matrix element in Eq. (22) can be calculated by employing Wigner--
-L+ Eckart theorem, since for the f 	 d transition,

and the d —; f transition,

The electric dipole transition matrix elements of 4f 8  ( 7F6Γ1) —> 4f7 ( 8S7/2 Γ7/2γ7/2)
5d (Γdγd) and 4f7 ( 6Ρ7/2 Γ7/2γ7/2) 5d (Γdγd) — 4f8 ( 5D4 Γ1) and 4f8 ( 5D4 Γ3γ) are
tabulated in Tables II, III and IV respectively. Note that the matrix element of
the transition 4 f8 (Γι ) —> 4f7 (Γ6 ) 5d (Γ5Γ7) is equal to zero because Γ6 x Γ7 does
not contain the Γ4 representation.

The energies of the intermediate levels 4f 7
 (8S7/2 Γ6 , Γ7 and Γ8 ) 5d (Γ5)Γ8

and Γ7 and 4f7 ( 8S7/ 2 Γ6, Γ7 and Γ8) 5d (Γ3)Γ8 have been taken as 37000 cm -1

and 57000 cm -1 respectively [15, 17]. The energy levels due to the electrostatic in-
teractions between the crystal field levels of the core 4f 7 ( 6Ρ7/ 2 ) and the 5d electron
would be expected to be much higher than the 4f shell and we could approximate
these energy levels to be degenerate. We substitute the calculated matrix elements
and the appropriate energies into Eq. (3) to estimate the twophoton transition
strength. The ratio, R, between the zz polarized twophoton transition strength
of Γ1 — Γ1 and Γ1 - 4 Γ3 is estimated to be equal to 5.6 which is in agreement
with the experimental result.

3. Conclusions

We have shown here that the two-photon transition of 7F6 (Γι) —+ (Γι) 5D4
of Tb3+ in the elpasolite lattice is allowed as a third-order perturbation. The
inconsistency between our direct calculation and the result in Ref. [13] is due to the
failure of the applicability of the Judd—Ofelt closure approximation. The closure
approximation does not only simplify the twophoton calculation but also sacrifices
the physical accuracy by changing the selection rule of the twophoton transition
from that of two electric dipole transitions to that of one electric quadrupole
transition.
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