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The melting of two-dimensional films formed on the (100) fcc crystal
is studied by Monte Carlo simulation. The results obtained suggest that
in systems with only weakly corrugated surface potential, exhibiting the
hexagonal close packed solid structure, the melting transition is followed by
the lsing-like transition as predicted by the theory of Nelson and Halperin.
In the case of highly corrugated surface potential, the film forms registered
structure which disorders gradually as the temperature is raised.

PACS numbers: 82.65.-i, 64.60.-i

The mechanism of melting and disordering of twodimensional adsorbed solid
phases is a subject of considerable current interest and hot controversy [1-3]. One
of the questions is the adequacy of the picture provided by the theory developed by
Kosterlitz, Thouless, Halperin, Nelson and Young (KTHNY) [4-7] to real experi-
mental systems. The hitherto collected experimental data [1, 8-10] as well as the
results of numerous computer simulations [1,11-14] seldom lead to unambiguous
conclusions. The KTHNY theory predicts that the melting of twodimensional
solid phase on a "flat" (noncorugated) surface is a two-stage continuous process.
In the first stage, due to dissociation of dislocation pairs, the system looses the
quasi-long-range positional order, but retains the quasi-long-range orientational
order. This corresponds to the transition from the solid to the hexatic phase. The
second stage is connected with the disclination-unbinding transition, occurring at
higher temperature ,and leading to the formation of isotropic liquid phase. This
scenario is considerably altered by the presence of periodic substrate potential
and the actual mechanism of melting depends on the symmetry and the size of
the substrate surface lattice as well as on the amplitude of periodic variations of
the gas—solid potential. In general, the presence of periodic potential is expected
to wash out the disclination-unbinding transition, and hence the melting becomes
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a one-stage process. This transition may be continuous, as for the flat surface, or
first-order. The only exception is the melting of a hexagonal adsorbate film on
a square lattice characterized by weak corugation of the gas-solid potential. In
this case the KTHNY theory predicts that the disclination-unbinding transition
is replaced by an Ising-like transition [6]. Thus, one expects that there are two
"liquid" phases with different orientational symmetry.

In this paper we report the results of Monte Carlo simulation for a series of
twodimensional adsorbed films on a square lattice, the (100) face of a simple fcc
crystal, and exhibiting different corugation of the gas-solid potential. The mutual
interaction of adsorbed atoms is described by the (12, 6) Lennard-Jones potential,
u(r), truncated at a certain distance, rmax . Throughout this paper we assume
that the cut-off distance is set at rmax = 2.5σ, as it was also assumed in our earlier
paper dealing with three-dimensional systems [14]. The adsorbed atoms are also
subject to the surface potential, V2D (τ), being a function of the twodimensional
vector τ = (x, y), which specifies the position of an atom relative to the surface
lattice unit cell. The surface potential is periodic and in the three-dimensional
system can be calculated using the Fourier expansion developed by Steele [15,16],

In the above equation the summation uns over all reciprocal lattice vection q and
Vb is an adjustable parameter allowing to change the periodic part of the gas-solid
potential. The Fourier coefficients V q3D(z) and the functionsfq(τ)can be found in
Ref. [15].

Now, we assume that in twodimensional systems the gas-solid potential
takes the following form:

which ensures that the corrugation effects are exactly the same as in the related [14]
three-dimensional model, providing that all parameters are the same. One can
expect, however, that for a given corugation parameter, Vb, the twodimensional
system will exhibit slightly higher tendency towards localized adsorption than its
three-dimensional counterpart. This is so, because by suppressing the out-of-plane
motion we eliminate the possibility of a better accommodation of the hexagonal
phase. In three dimensions some particles may stay at larger distance from the
surface but the interparticle distances may still remain practically unchanged. On
the average, the area occupied by a single particle in the three-dimensional system
is expected to be slightly smaller than in the strictly twodimensional system.

We consider a series of systems with the adsorbate atoms of the size, σ* =
σ/α = 0.9, and the density equal to the density of completely filled registered
monolayer, p* = pσ*2 = 0.81 and with different effects of the gas—solid potential
corrugation (controlled by the value of the parameter Vb). Then, we assume that

ε*gs =2.0, in agreement with the assumption of Ref. [14]. One should note that
unlike in studies of twodimensional systems on noncorugated surfaces, where the
strength of the gas—solid potential is irrelevant, here it influences the height of
potential barriers for surface diffusion.
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From the simple ground state calculations it follows [14] that for sufficiently
low values of Vb, the systems considered here form the hexagonal close packed (hcp)
solid phase at low temperatures. On the other hand, when Vb exceeds a certain
limiting value, Vb,lim(σ*), the stable low temperature stucture corresponds to
the registered 1 x 1 phase. From the observations made for three-dimensional
systems it is clear that for intermediate values of Vb the uniaxially ordered phase
is likely to appear. This possibility has not been taken into account in the ground
state calculations and we cannot determine the limits of Vb embracing the region of
stability for this phase. The predictions based on the simple geometrical argument
as proposed by Buch and Venables [17] may be helpful in determining whether
such phase is likely to appear for a given σ*.

Since our aim here is to study subtle changes in the system structure, we need
to use appropriate tools. The usual calculation of such thermodynamic properties
like the gas—gas and gas—solid contributions to the total system energy and the
heat capacity are very useful in determining the appearance of different phase
transitions, but do not give precise information concerning the microscopic changes
in the system stucture. Therefore, apart from the quantities mentioned above we
also record the radial distribution function, g(r), and the bond-orientational order
parameters, Ψk and ψk, defined by

and

where the first sum uns over all particles in the system, the second sum over all
nearest neighbors of the particle m, φmn is the angle between the bond joining
particles m and n and an arbitrary reference axis, chosen here to be the x-axis of
the surface lattice, and Nb is the number of bonds in the system. Basically, in an
ideal situation, when only pure phases are present, we can readily determine their
nature by looking at the behavior of the bond-orientational order parameters.
Namely, in the disordered, liquid or gas phase, all these parameters should be
equal to zero Since áll possible mutual orientations of bonds appear in the system
with the same probability. In the registered phase of square symmetry, either
1 x 1, ' x 2 etc., we expect ψ4 = 1 at sufficiently low temperatures,
and both Ψ6 and ψ equal to zero. In the hcp phase, we have ψ4 0, ψ6 N 1
while the value of ψe6depends on the orientation of the solid phase with respect to
the surface lattice. In general, Ψ6 > ψ , and when ψe6 is considerably lower than
ψ 6 it indicates that a preferred orientation of the adsorbate with respect to the
substrate does not coincide with the substrate symmetry axes [18, 19]. Finally, in
the case of uniaxially ordered phase we expect that the bond-orientational order
parameters will take some nontrivial values between 0 and 1.

Besides, we also define the corresponding susceptibilities
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as well as the fourth-order cumulants

The simulations have been carried out using the standard Monte Carlo
method in the canonical ensemble for three different sizes of the simulation cell:
14 x 16, 21 x 24 and 28 x 32 (the unit of length is the length of the surface lattice
vector α) and containing different number of particles equal to 224, 504 and 896,
respectively, so that the number density was always the same. Standard periodic
boundary conditions have been applied. Of course, the system sizes considered
here prevent development of long-range correlations and hence we cannot study
dynamics of defect pairs. Therefore our analysis must be treated as only pre-
liminary and qualitative. The primary aim of this paper is to demonstrate the
usefulness of finite size analysis of higher moments of the bond-orientational order
parameters in studies of the systems considered here.

Figure 1 presents the bond-orientational order parameters ψ4 and Ψ6 for the
systems of different *corugation of the gas—solid potential and which exhibit the
registered 1 x 1 structure at low temperatures. No finite size effects are observed
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and the disordering occurs gradually as the temperature grows. Only the behavior
of the residual hexagonal order (measured by Ψ6) is affected by the finite size of the
simulation cell. The decrease in Ψ6 for larger systems merely reflects the fact that
we are gradually approaching the thermodynamic limit, where ψ6 should be close
to zero in the both registered and disordered phases. In the case of Vb = 0.6 the
system exhibits uniaxial ordering at low temperatures, which gradually disappears
as the temperature increases.

In the case of lower corugation of the gas-solid potential (14, = 0.3) the low
temperature solid phase has the hcp stucture. Mere we find a sharp first-order
melting transition located at T* Π, 0.3. Although the bond-orientational order pa-
rameter Ψ6 does not exhibit a discontinuity at the transition point (see Fig. 2a), the
smooth behavior results from the strong flnite size effects. A direct confirmation
of the first-order character of melting comes from the behavior of the fourth-order
cumulants U4(L) and U6(L). The cumulants for systems of different size should
exhibit a common intersection point for any first-order transition [20, 21]. The re-
sults given in Fig. 3 show that both U4(L) and U6 (L) possess common intersection
points at the reduced temperature T 0.3.

It is noteworthy that the bond-orientational order parameter ψ4 considerably
increases upon melting (see Fig. 2b). Thus, the liquid phase appears to be partially
ordered due to the effects of the surface potential. On the other hand, the bond-
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orientational order parameter ψ (not presented here) is practically the same as Ψ6
over the entire temperature range. This shows that the adsorbate layer orientation
coincides with one of the symmetry axes of the substrate surface.

For still weaker corrugation of the surface potential (Vb = 0.1) the mechanism
of melting changes again and appears to be a two-stage process. Figure 4 presents
the behavior of the bond-orientational order parameters ψ6 and ψe6 for the largest
systems considered here. The results are quite consistent with the predictions of
the KTHNY theory [6, 73. At Τ* ki 0.4 we observe a sudden, though small, drop of
the bond-orientational parameters. Thus, the system retains a considerable orien-
tational order at temperatures above this transition. Then, the second transition
occurs at Τ* 0.485, which is connected with the loss of orientational order in
the system. The KTHNY theory predicts that the melting of a twodimensional
film on a weakly corugated square substrate should be a two-stage process. The
first transition, connected with the dissociation of dislocation pairs, transforms the
solid phase into hexatic phase, quite similar as in the case of a smooth substrate.
The subsequent, disclination-unbinding transition predicted for the smooth sub-
strate, should be replaced by an Ising-like transition. Indeed, from the beh avior
of the cumulants U6(L) obtained for systems of different size (see Fig. 4) we find
that a common intersection point U* occurs at Τ* 0.485 ± 0.005 and Usti 0.61
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has the value corresponding to the universality class of the twodimensional Ising
model [20, 21]. Of course, we do not claim that the mechanism of melting on
weakly corugated surfaces corresponds to the solid—hexatic-fluid sequence pre-
dicted for uniform twodimensional systems. Our finding, however, is the first
clear hint that the mechanism of melting on weakly corugated square substrate
might be the same as predicted by the theory due to Nelson and Halperin [6]. Also,
the observed first-order melting on the surface with higher corrugation (Vb = 0.3)
is consistent with the prediction of that theory. Although the reported simulation
results have been obtained for rather modest system sizes, the presented analysis
sufficiently supports our general and qualitative conclusions. To determine the
nature of the intervening phase, appearing between the fluid and solid phases,
further studies involving calculation of the bond-orientational correlation function
and still larger systems are needed.
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