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The spatial localization of the double-quantum NMR heteronuclear co-
herence transfer in solids, in the presence of a main magnetic field gradient is
analyzed. The indirect detection procedure by whicI the dipolar order of the
abundant spin system with I = 1/2 is transferred to the double-quantum
coherence of the quadrupole nucleus with S = 1 and back to the I-spin
dipolar order is considered. The slice rofile and the cross-relaxation rates
are evaluated as a function of the e: ρerimental parameters and the sample
relevant NMR quantities. The possibility to use this slice selective procedure
for imaging and volume localized spectroscopy of quadrupole nuclei in high
magnetic fields is discussed.

PACS numbers: 76.70.-r, 76.70.Fz, 33.35.—q

1. Introduction
During the last few years a considerable progress in the field of spatially

resolved ΝMR spectroscopy and ΝM1 imaging in solid materials [1-3] (and ref-
erences therein) has been made. Since the spatial resolution is ultimately limited
by sensitivity, most experiments have been performed on protons so far. How-
ever, the proton spectra in solids are broadened by strong homonuclear dipolar
intersections, the influence of which must be suppressed to achieve an efficient
spatial encoding. The problem of severe homogeneous line broadening can be cir-
cumvented by imaging of magnetically dilute nuclei, e.g., 13C, 2 H, etc. [4-8]. The
heterogeneously broadened lines of the dilute nuclei with the spin S = 1/2, like
13C, can be more easily narrowed by high-power proton decoupling combined in
some cases with magic-angle sample spinning. For the quadupole nuclei the to-
tal multiple quantum ΝMR coherence is insensitive to the first order quadrupole
couplings which leads to the possibility to record high-resolution NMR spectra
[9-13]. Indirect heteronuclear coherence transfer via dipolar order allows the ob-
servation of 14Ν double-quantum (DQ) transitions for quadupolar splitting up to
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2 MHz [11]. The versatility of this technique is superior to that of direct spin-lock
cross-polarization. Moreover, these approaches give access to the rich structural
and dynamical information of 13C, 15Ν, etc, and quadupole nuclei (e.g. 2 H or 14N)
spectra which is the most important prerequisite for useful application of localized
NMR in solids.

In the field of solid-state imaging or volume-selective spectroscopy and effi-
cient method for slice-selection is required in order to reduce the duration of the
experiments. The ffrst  method used for slice-selection in imaging [14] as well as
for volume-selection in solids is the LOSY technique [15, 16], which is based on
the off-resonance sensitivity of the spin-locking procedure. Another methods ap-
plied in the case of protons are based on DANTE sequence [17] and Lee—Goldburg
line-narrowing technique [18,19].

A slice-selection method for localized 13 C spectroscopy for solids and liquids
was recently proposed [20, 21,1] and the efficiency of the technique was analyzed
theoretically and experimentally [22-26]. The sequence is based on single-quantum
(SQ) cross-polarization from abundant to dilute spins in the presence of a main
magnetic fleld gradient. The efficiency of the cross-polarization is strongly sensitive
to resonance offsets and consequently shows a strong spatial dependence in the
presence of field gradients. The sensitivity enhancement of the rare spins and of
localized excitation is achieved at the same time. Following this process, the full
spectroscopic information of the dilute spins may be exploited using suitable pulse
sequences.

The main goal of this paper is to analyze the slice proflle produced in the
heteronuclear coherence transfer by double-quantum transitions in the presence of
the main magnetic field. We shall concentrate here on the excitation and detection
of double-quantum coherence by cross-polarization via dipolar order. This tech-
nique is suitable for quadrupole nuclei with large quadrupolar splitting and can
be applied to record double-quantum high-resolution spectra by observing proton
resonance.

The paper is organized as follows. In Sec. 2 we introduce the space localized
double-quantum Hamiltonian which describes the process of coherence transfer by
double-quantum transitions for an abundant spin system I = 1/2 and a dilute spin
system S = 1, with quadupolar interaction in the presence of a field gradient. The
spatial localized spin dynamics is discussed in Sec. 3. The slice proflle obtained by
indirect double-quantum detection via cycled dipolar order transfer are evaluated
in Sec. 4. The possibility of volume-selective investigations of the structure and
dynamics of quadrupole nuclei in materials is finally discussed.

2. Spatial localized double-quantum Hamiltonian

In this section we recall some details related to the effective double-quantum
Hamiltonian which describes double-quantum coherence transfer experiments in
solids. The high field DQ-Hamiltonian in the laboratory reference frame for the
experimental configuration presented in Fig. 1 is
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Tle Hamiltonian for the abundant I-spin system is

where the Zeeman Hamiltonian, which includes also the chemical shift, has the
form

Here ω0I = γ"B0 is the Larmor frequency and ΔΩI(z) = γIGzz with γI being the
magnetogyric ratio, Gz is the field gradient and z is the space coordinate.

The tuncated homonuclear dipolar Hamiltonian is

with the dipolar interaction factor

The Hamiltonian Ηs, which characterizes the dilute quadupole spin-system,
is

The Zeeman Hamiltonian HZS, which includes also the chemical shift, has the form

where ' ω0S = γsB0 and ΔΩS(z)=γSGzz.The magnetogyric ratio of spinS is
is. In the presence of a strong static magnetic field the truncated quadrupolar
interaction can be written (101 as
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where the first order quadrupolar splitting 2ωQ is given by [10]

The Euler angles (α, ß, γ) specify the orientation of quadrupole interaction
with respect to the magnetic field Β0 and the asymmetry factor η = (Vyy —
Vxx)/Vzz describes the deviation from the axial symmetry.

For the diluted S-spins in Eq. (6) we can neglect the dipolar coupling between
themselves.

The Hamiltonian HIs describes the interaction between I- and S-spin sys-
tems. The main contribution is given by the heteronuclear dipolar interaction

In the above expressions the indices i, j and m refer to the I and S spins, respec-
tively, rid is the distance between i and j spins and θij is the angle between the
vector rid connecting i and j spins and applied magnetic field B0.

The interaction of the spin system with the radiofrequency magnetic fields
of strengths Β1I , B1s and frequencies ω1I, ωiS has the form

where ωit = γIΒ1I and ωiS = γsB1S•
The total Hamiltonian can be written [16] in a good approximation as a sum

of z-slice Hamiltonians, i.e.

and consequently the total density operator of the spin system has the form

The local Liouville—von Neuman equation in the laboratory reference frame .
is

where we denoted a Liouville operator corresponding to an operator Ο by O and
h=1.

In the following we will refer only to a particular z-slice but for simplicity we
shall drop sometimes in the following equations the explicit dependence on spatial
coordinate z.

In the spatially localized rotating (R) frame the Liouville-von Neuman equa-
tion (15) becomes
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where

with

where

with ΔωI = w0I —ωI and ΔωS = ω 0S -ωs. We have considered here that RF-fields
are polarized along the x-direction in the rotating frames (x, y , z are the notations
for the coordinate axes in the rotating frames).

In the case of multilevel spin system it is convenient to express the Hamil-
tonian in terms of fictitious cartesian single-transition operators. Using these op-
erators

Eqs. (20b—d) can be rewritten as

We introduced now a tilted rotating (TR) frame deflned by

and

The canonic transformation is

where

Using the above transformations the total spin Hamiltonian takes the form
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where ωe ff ,I = [(ΔωI + γIGz z)2 +- ω I] 1 Ι 2 . The I-spin tilted rotating frame has
(, y, ź)-axis.

The above Hamiltonian has been written in the approximation of high-effect-
ive field, i.e. ωeff,I »'44 , where ωLI is the local field in the tilted rotating frame.
In this quantum-mechanical representation the total Hamiltonian is  quasi-diagonal
in the I-spin Liouville subspace.

To diagonalize the H amiltonian, Eq. (26), also in the S-spin Liouville sub-
space, we make the following transformations:

with ω e = [(2ω S)2 + 4]1/2. We have considered in Eq. (28b)that ΔωS = 0.
Using the transformation of Cartesian single transition operation under ro-

tations [27,28] and the approximation of weak S-RF fleld, i.e. ω1S C ωQ (θ K 1),
from Eqs. (26) and (27) we can obtain the following expression for double-quantum
Hamiltonian:
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This Hamiltonian describes the heteronuclear DQ-coherence transfer in the
case of spin-locking (SL) procedure. It is now possible to separate the spin systems
involved in the DQ-coherence transfer into two subsystems characterized by the
Hamiltonians

and a single-quantum subsystem described by the Hamiltonian

These Hamiltonians describe the quasi-invariants of motion, i.e. [Η( 1 ), ΗDQ] =
[H (1), Η } = [Η , HSQ(2)] = 0.

The I-spin subsystem described by H(1 ) Hamiltonian and S-spin DQ-subsys-
tem described by ΗDQ Hamiltonian are coupled by the perturbation Hamiltonian

The general form of the Hamiltonian, Eq. (29), makes it possible to discuss
the adiabatic demagnetization in rotating frame (ADRF) procedure as a limiting

• case of SL procedure for I-spins preparation. If Β1I is changed adiabatically from
the value Β1I » BLI to the value Β1I <ς BL,, where ΒLI is the local field at the
I-spins site in their tilted rotating frame [29], the tilt angle θI can be considered
as approaching the zero value. Thus the Hamiltonians of interest in the ADRF
case become from Eqs. (30)
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The coupling produced by the Hamiltonian Η p will affect only the quasi-
-invariants of motion π( 1 ) and HDQ(2) but not the quasi-invariant described by ΗSQ(2)
Hamiltonian.

The above Hamiltonians describe the process of DQ-heteronuclear coherence
transfer for all regions of the sample if the gradient strength Gz satisfies the condi-
tion γs Gz dz «ωQ, where dz is the sample dimension. This condition assure that
the S-irradiation RF-field frequency remains for any position close to the Larmor
frequency ω 0 S. If this condition is not satisfied the single-quantum coherences are
also produced.

3. Spatial localized spin dynamics
We want to discuss in the following the spin dynamics for a heteronuclear

DQ-coherence transfer  via dipolar order. The basic experimental scheme is pre-
sented in Fig. 1. The abundant I = 1/2 spins are prepared in a state of low spin
temperature by adiabatic demagnetization in the rotating frame (ADRF) proce-
dure in the absence of any fleld gradient. The contact pulse is applied at the
Larmor frequency of S-quadupole spins in the presence of a main magnetic field
gradient.

The spin systems which participate in a double-quantum heteronuclear co-
herence transfer can be described by the formal inverse spin temperatures defined
as [30] 	.

where pDQ is the density operator in the same quantum mechanical representation
as the DQ-Hamiltonian given by Eq. (29).

The time evolution of the 'inversé spin temperature as a function of the
experimental preparation conditions and physical characteristics of the subsystem
can be obtained from the corresponding Liouville-von Neuman equation of the
whole system. In the (i) limit of: fast-dipolar fluctuation correlation time 'rc , i.e.

rc «ΤIS(DQ) , where ΤIS(DQ)is the heteronuclear DQ-coherence transfer time and (ii)
second order in the coupling Hamiltonian, the following equation is valid [30]:

From Eqs. (30), (31) and (36) we can write for the ADRF-case



Spatial Localized Double-Quantum NMR ... 	 707

The above expression describes the spatially localized heteronuclear coher-
ence transfer rate. The angle φ, the effective frequency ωeff,S(DQ)andΜ S— the
van Vleck second moment of the magnetic resonance line determined by the
cross-coupling dipolar interaction depend on the z-coordinate of the slice. This
dependence is not written explicitly in Eq. (37) in order to simplify the equations.

The z-slice spectral density functions which describe the dipolar fluctuations
in the "thermal bath" represented by the I-spin system is gi ven by

which is the Fourier transforms of the localized dipolar fluctuation autocorrelation
functions [30],

In the above equations h represents the I-spin operator for the i-spin inside
of the z-slice.

We can define the normalized DQ-relaxation ratio as

From Eqs. (37) and (40) we have

Equation (41) is written for the case of a homogeneous sample, i.e., ΜIS2(Ζ) =
ΜIS2(ο)for any z-slice. For the case of on-resonance irradiation we have θI(0) =

Q0(0) = π/2.
In order to analyze the spatial dependence of the relaxation rate we have

to evaluate the dipolar spectral density function. A detailed computation of this
function is very complicated [30]. To simplify the evaluation we will consider that
the dipolar fluctuation autocorrelation function could be described in a good ap-
proximation by a Lorentzian function, i.e.

The correlation time is τ = (2/Μ2) 1 / 2 , where Μ2 is the second moment of the
corresponding spectral density function which can be expressed as a function of
lattice sums. An estimation of this correlation time is τc 2π/ωLI•

With these assumptions Eq. (41) can be written as

We can remark from the above equations that the DQ-heteronúclear coher-
ence transfer rate has a strong dependence on the position in the sample. This
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spatial dependence is mainly determined by the z-dependence of the dipolar spec-
tral density function.

In order to analyze the spatial localization of the normalized relaxation rates
we will consider the particular case of benzene-d 1 , for which the DQ-heteronuclear
coherence transfer between Ι = 1H and S = 2D has been carefully experimentally
examined [10].

The deuterium quadupole interaction frequency of monodeuterobenzene
is 2vQ = 70.4 kHz and the maximum of its powder NMR spectum is at vQ =
±35.2 kHz. The local field strength ωLI in frequency units of the proton was
calculated [10] from the linewidth of the proton spectum of benzene-d1 and has the
value ωLI/2π - 2.75 kHz. Using this value we can estimate τ^ = 2π/ωLI = 364 μs.

The spatial dependence of rDQΑDRF normalized coherence transfer rates as a
function of field gradient strength, quadrupole interaction frequencies and S-radio-
frequency field strength is presented in Fig. 2. It is evident from Fig. 2a that the
localization effect is relatively high for moderate value of gradient strength.

The sensitivity of relaxation rate profiles to the value of quadupole inter-
action frequency is presented in Fig. 2b. A small dependence of the linewidth
profiles as a function of VQ is evidenced. In the ADRF case the spatial localiza-
tion decreases for higher values of v1S (cf. Fig. 3c). We intend to analyze now
the spatial dependence of the ratio between DQ- and SQ-coherence transfer rates.
For SQ-heteronuclear coherence transfer we will consider the spin S = 1 with no
quadrupole interactions, i.e. VQ = 0. From the above equations and the expres-
sions [30] for rS Q we can write

In Fig. 3 we have represented the spatial dependence of rDQ/SQADRFβ for different
values of v 1 S. In the central region of the sample the rDQADRF exceeds with almost five
magnitude order the rSQΑDRF-rate.This is related to the reduction of V1S with the
factor v1S/vQ for DQ-coherence transfer process and much faster cross-relaxation
rate as a result of a much better match with the I-spin local frequency.

At the time t from the beginning of the contact pulse after the quasi-equilib-
rium state for quasi-invariants of motion was reached the local DQ-density operator
has the following form

where Tr{1} = (2S+ 1)NS(2I+ 1)NI with NS and NI the number of the spins S
and I from the z-slice.

As a result of preparation procedure and coherence transfer we have βI (z, t)
and βSDQ(z , t) » βL (βL = 1/kTL, where TL is the lattice temperature).

The time evolution of inverse effective spin temperature for the two  quasi-in-
variants coupled in the process of heteronuclear coherence transfer can be described
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by the following coupled differential equations [31]:
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where any spin-lattice relaxation process for I and S spins has been ignored. The
range of time t, for which Eqs. (46) are valid, is t > T2I (to avoid the transient
oscillation regime), where Τ2I is the effective dephasing time of I spins transverse
magnetization. The spatial localization ratio ε(DQ)(z) between heat capacities of
the quasi-invariants of motion is given by

The initial conditions of Eqs. (46) are related to the saturation pulse sequence
applied at the Larmor frequency of S spins for which βS(DQ)(z, 0) = 0 as to the
preparation of I-spins.

For ADRF-procedure performed in the absence of a field gradient the pro, ,

duced low spin temperature is spatially distributed as a result of different values
for ω4.I in the case of inhomogeneous sample, i.e.

The solutions of Eqs. (46) with the above initial conditions are
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The formal inverse spin-temperature, βS(DQ)(z,t), measures the degree of
which the double-quantum coherence is created by heteronuclear transfer from
I = 1/2 spins. The process of DQ-heteronuclear coherence transfer is spatially
localized and the coefficient βS(DQ )(z, t) describes this spatial distribution.

4. Heteronuclear transferred double-quantum coherence
by indirect detection

The indirect detection procedure which will be analyzed in the following
is presented in Fig. 4. We will discuss here only the case of DQ-coherence ex-
citation and detection via dipolar order which is a much more universal tech-
nique [11] as compared with the spin-locking procedure especially for systems
with large quadupolar splitting. The duration of the contact pulse for excitation
of DQ-coherence is denoted by Ι.  and for the contact detection pulse by t. The
dipolar order at the end of excitation DQ-coherence period is eliminated by a
"magic" 54.7°-pulse [32]. The created dipolar order at the end of detection period
is transferred by ADRF-procedure [31] into the Zeeman order by a (π/2)-x pulse
along the static magnetic field. The spatial distributed Zeeman order is read by a
solid-echo in the presence of a read magnetic field gradient.

At the end of the coherence transfer contact pulse of length the inverse
effective spin temperature are given by Eqs. (49) with t = t, and ε(DQ)ADRF . With
these initial conditions the system of coupled differential equations (46) can be
solved and the solution for inverse spin temperature of I-spin system at the t
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moment of time during the back coherence transfer is given by

We are interested to observe the SQ-coherence of I- spin system. The relevant
density operator in the rotating reference frame is given by

The inverse local spin temperature at the end of ADRF process βI f (z) can
be evaluated [29] considering the process to be isentropic. It is given by

The process of adiabatic remagnetization is performed in the absence of the
field gradient. In spite of that, the I-spin temperature is spatially localized as a
result of previous history of the sample, restricted spin-diffusion [16] and sample
heterogeneities.

The final local density operator at the end of ADRF process is

If we consider an ideal read pulse sequence (generally a  solid-echo pulse sequence)
the SQ I-spin coherence proflle can be evaluated from, the above equations

The recorded spatial profiles reflect the spatial localization process of direct and
inverse DQ-coherence transfer, which is evident from the expression of βI(z, t +tc).

The normalized DQ-coherence transfer profile detected via I- spin signal is

For a homogeneous sample (i.e. NI(z) = NI(0) and ωLI(z) = ωLI(0))
Eq. (54) can be rewritten as

The spatial distribution of the cyclic DQ-heteronuclear transfer described
by Eq. (56) was represented in Fig. 5 for t = t. and different values of gradient
strength, total contact pulse duration and the S-radiofrequency field amplitude.
The slice profiles are determined by a "convolution" between the spatial distribu-
tion of the direct and the inverse DQ-coherence transfer. The width of the slice
profiles shows a strong dependence on gradient strength G. For a gradient strength
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of Gz = 30 G/cm the localization is in the order of 500 μm (cf. Fig. 5a). The width
does not depend essentially on duration of contact time n = t/Τ C»(0), in the
investigated range (cf. Fig. 5b), but is sensitive to the strength of the contact pulse
vas. The localization becomes better for a smaller value of v1s (cf. Fig. 5c).
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5. Conclusions

The cross-polarization of rare spins from dipolar order state of abundant
spins is often advantageous, because a much smaller radiofrequency contact pulse
applied to S-spins suffices. Since in the case of quadupole S-spins radiofrequency
fields are scaled by ω1s/ωQ this advantage becomes severe in DQ-coherence trans-
fer. The high-resolution spectra of quadupole nuclei (e.g. 2H, 14Ν, 23Νa, 27ΑΙ) in
solid can be recorded from DQ-coherence giving access to important structural
and dynamic information. The indirect detection via protons will increase the
sensitivity of the technique and will extend the accessible range of quadupole
interactions.

The process of heteronuclear DQ-coherence transfer from I = 1/2 spins to
S = 1 spins in the presence of a field gradient is strongly spatially localized.
Depending on the gradient strength, contact pulse duration and amplitude the
slice profile has a quasi-triangular shape. Moreover, the effect of the field gradient
on space localization is amplified by the coherence order and by cyclic transfer.

The dependence of the llnewidth at the half intensity of the DQ excited
profiles on gradient strength follows the general dependence law, Δz1/2Gz = const,
where the value of the constant depends on the experimental conditions and the
sample internal parameters. We estimate that for moderate field gradient strength
of about 100 G/cm a slice width of the order of 10 μm can be excited.

The slice selection produced simultaneously with the DQ-coherence will open
the possibility to design compact, high-efficient pulse sequences for volume local-
ized spectroscopy and imaging of quadrupole nuclei in high magnetic field.
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