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The impact parameter dependent energy transfer and random stopping
power for ions carrying electrons were determined within the first-order Born
approximation. The ion and atom were described by many-electron ground
states. The excitations and ionizations of both collision partners were taken
into account, but exchange of electrons was neglected. With the Bethe sum
rule and closure relation, the random stopping was shown to have the Bethe
form. For the Moliere form factors the anaJytical results were obtained. The
effective charge was discussed in the random and channelling conditions.
Comparison with some previous calculations was carried out.

PACS numbers: 34.50.Bw, 61.80.Mk

1. Introduction

The basic processes responsible for the slowing down of fast heavy ions in
matter are qualitatively understood [1-6], but the interest in this problem remains
alive for at least two reasons. Ions with velocity v proceed in the solid having, at
least temporarily, bound electrons [7-11], even if v > Ζ m, and the distribution
of charge is not completely predicted. Also, the contribution of higher order terms
in the Born series [12, 13] creates a problem of completeness and validity of the
starting point for simplified calculations. Experimental difficulties are caused by
overlapping of the above and also other phenomena.

The problem of the random stopping power Sr for partially stripped ions
has been formulated and solved within the first Born approximation [7-9]. Re-
sults of this calculation have shown rather good agreement with experiment [9],
even without taking into account any excitation of the projectile. Calculations of
the position-dependent stopping power for light ions specularly reflected from the
surface [9] also have shown good agreement with experiment without projectile
excitation.

In this paper we concentrate on presenting formulae for the impact parameter
b dependent average energy ΔΕ(b) transferred in a collision of anion with an atom.
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The ion has been assumed to be relaxed to the ground state after each collision
and can become, in a course of successive collisions with atoms, excited or ionised.
In this meaning the loss of electrons has been included in the calculation, but
the exchange has been neglected. The analytical results for ΔΕ(b) and Sr have
been derived for the Moliere approximation to the Hartree—Fock form factor. A
comparison of stopping and effective charge with the model neglecting excitation
of the projectile was carried out.

Atomic units are used throughout this paper.

2. Calculation procedure

The time dependent Schrödinger equation written for the system of two col-
liding particles composed of nuclei and electrons is based on the following Hamil-
tonian:

In the above subscript x stands for atom (a) or ion (i) indices, and prime
excludes i = j from the summation. R is the separation of nuclei. Zx and Nx are
the atomic number and the number of electrons, respectively.

We assume the model in which the ion (Ζ , N , n) follows the straight line
trajectory R = b + vt with the velocity v and impact parameter b in respect of
the atom (Za , Na , m) located in the origin.

The Schrödinger equation can be written, in the standard manner, as the
following set of differential equations:

where the summation (kl) is taken over complete eigenstates of the unperturbed
Hamiltonian H0 belonging to the atom and the ion respectively, the prime' denotes
time derivative, and ωmn 00 = ωmn -ω00. The transition amplitude, fmn = Cmn (∞)
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Under the model assumption that the eigenstates of the unperturbed
Hamiltonian H0can be approximated by a product of the eigenstates of the components

(ra ri |mn) = (ra m) (ri |n) , and consequently ωmn00 = ωm0 + ωn 0 , we can write
f(b) in the form

and x stands for atom (a) or ion (i).
With the use of the transition amplitude f(b), Eq. (5), we can calculate

the transition probability P(b), the stopping power S^, and the impact parameter
dependent energy loss ΔΕ(b), provided summation over appropriate final states
can be performed, after integration over the Fourier space. For calculating P(b) =

f+(b)f(b)we can use the Fourier representations for eachf(b).After change of
variables from (q 1 , q2 ) to (k, q), where q 1 - q2 = k, q 1 + q2 = 2q, and after some
algebra we can make use of Eq. (5) to write (Q mn = ωmn00 /v):

where the functions

can be interpreted as the l-component of the ion (x = i) or atom (x = a) form
factor.

These functions fulfil the following sum ules [9, 14-16] (see also Appendix A),
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We can interpret Ζ 2fx(k, q)as the total effective charge of theion(x=i),or the
atom (x = a) represented in the Fourier space. The summation over 1 is taken
over all the eigenstates (excited and ionised) of the ion or the atom separately.
These sum rules can be treated as a generalization of the Thomas-Reiche-Kuhn
sum rules. This can be seen, if we set k = 0in Eq. (11a) to obtain

Following Bethe [1, 9, 14, 16], we use Sr of Eq. (9) to define a parameter ω
such that the momentum ω/v separates the integration over q in Eq. (9) into two
regions, the dipole region, where the dipole expansion can be applied,

and the sum ule region, where the sum rules of Eq. (11) can be used, after exchange
of integration over momentum space q and summation over final states (mn),

For the definition of ω we set SDr(ω) = 0, and then in consequence we obtain
Sr = S for the total random stopping power. A similar treatment has been applied
previously [14, 16]. In the Bethe theory treating Sr for point charge projectiles
[1-4, 16] and for the approach to S r for nucleus-electrons composite staying in
the ground state [7, 8], the momentum ω/v is cancelled out after adding the
sum rule and the dipole contributions. The physical meaning of the parameter ω
(originally Ref. [1] called it the mean excitation energy and denoted by I) is related
to the logarithmic average of excitation energies of the excited system. Explicitly
Eq. (12a) for ω takes the form
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In the derivation of Eq. (13) we have used the sum ules obtained from Eqs. (24)—(27)
of Ref. [15] after k = Ο transition. The rules also were analysed in Ref. [16]. The
parameter ωx stands for Bethe's mean excitation energy Ix , for ion (x = i) and
atom (x = a), respectively.

In the case of a neutral atom (Na = Za) and for high velocity bare ion v » 1
and Ni = 0, ω = ωa . If a neutral ion (Ni = Ζi) collides with an atom (Na = Za),
then according to Eq. (13), ω is determined by the equation R = 0.

From the definition for the random stopping power Sr = f d2 bΔE(b) we
assume that the parameter ω of Eq. (13) replaces the {mn} set in the δ-function
of Eq. (7) for the impact parameter dependent electronic energy transfer ΔΕ(b).
This step enables an exchange of the summation over final states (m, n) of the
Hamiltonian H0 and the integration over momenta k, q in Eq. (8). With the use
of the sum rules, Eqs. (11), the summation over (m, n) can be performed first
to yield the ΔΕ(b) in a form consistent with integrated stopping power Sr of
Eqs. (9, 12b). The retained sum-ule contribution obtained after application of
Eqs. (11a-c) in Eqs. (8), (9) can be written as

If the ion is left in its ground state after the collision, then n = 0in
Eqs. (7)-(9), and ω = ω a follows from Eq. (13); Eqs. (14), (15) can thus be reduced
to the form [8, 9], which retains only the screening effect

According to Eqs. (14), (15) the stopping is a sum of two components which
are due to atom and projectile excitation and ionization, contrary to Eqs. (16), (17)
where an ion-elastic collision with a frozen charge distribution on the projectile
is assumed. This sum is a direct consequence of the model assumption that the
eigenstate of the syStem is a product of component eigenstates, and the eigenenergy
of the system is a sum of component eigenenergies.
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3. Results and discussion

The results based on Eqs. (16), (17) were discussed in Ref. [9] for the
hydrogen-like one-electron ion form factor, Fi(q) = Nif(q), where F(q) =
(1 + q2/4)- 2 , q0 = 2/Ζ, Ni = 1. It was shown that the ion-elastic contribution
was nearly sufficient for an appropriate description of stopping in the simplest case
of one-electron helium and hydrogen ions scattered from a surface [9].

Apart from the contribution coming from ion (i) excitation and ionization
the squares of the effective charge Z2fx(k,q)in Eqs. (14), (15) have a slightly
different behaviour. This can be seen when we replace in Eq. (11) the many-body
form faction Fx(q) by an incoherent sum of one-electron form factors fx (q) in the
following manner:

where fx(q) is the one-electron form factor of the ion (x = i) or atom (x = a).
On analysing Ζ f i (0, q) for the ion we can distinguish the screening

[Ζ — Ni fi(q)]2 and the anti-screening Ni {1 — [f (q)] 2 } contributions [5, 17]. The
screening of the ion is observed at large impact parameter b (corresponding to
small momentum transfer q) as ßt i (0, 0) = {Ζ - Ni} 2 in accordance with the
frozen-charge state model of Eq. (16). The anti-screening is caused by ionic elec-
trons at small b (large q) and results in Z2fi (0, oo) = Ζ? +- Ni in disagreement with
Z? of Eq. (16) and the point charge model. Then both mechanisms strengthen
close collisions over distant collisions. Apart from this contribution coming from
excitation and ionization of an atom by an ion, there is also a second one compo-
nent in Eqs. (14), (15) coming from excitation of the ion (represented by Ni and

Fi(k))by the atomic chargeZ2fa(k, q).This component must be also analysed in
terms of screening and anti-screening phenomena.

In order to obtain analytical results for ΔΕ(b) and Sr of Eqs. (14), (15), we
simplify conditions as much as possible. We make an advantage of Eq. (19) with
the Moliere approximation [8] to the Hartree-Fock form factor describing both ion
and atom



Effective Ion Charge 	 587

This approximation assumes a statistical description of the many-electron system
corresponding to a screening parameter αTF.

Sr of Eq. (14) and ΔΕ(b) of Eq. (15) can be rewritten, respectively, as

In S(k) the dependence on y is incorporated in ω of Eq. (13). In Eqs. (21),
(22) the ion stopping is clearly separated into two components. In the first one
the ion, represented by the function Sai(k) of ion effective charge Ζ2fi(k , q), excites
the atom, represented by atomic form factor Nafa(k). In the second component
the situation is opposite, ionic electrons are excited by the effective charge of the
atom. This splitting is a direct consequence of the assumption that the ground
state of the ion—atom composite is a product of the component eigenstates and
the eigenenergy is a sum of corresponding eigenenergies.

For Z2fx(k , q) given by Eq. (19) and f(q) by Eq. (20), i.e. by the Moliere
approximation to the Hartree-Fock form factor, the integral for Syx(k) of Eq. (23)
can be calculated analytically with the result given in Appendix B, Eqs. (B1), (B2).
This analytical form of S(k) is the basic result of this work.

We can make the following simplifications which may provide some instruc-
tive conclusions. Let us assume that the ion of atomic number Ζ carrying Ni
electrons is retained in its ground state (n = 0) after collision with a neutral atom.
We use S(k) of Eq. (23), in the small k approximation (Syx (0) of Eq. (B2)). The
physical meaning of this approximation is related to the fact that in the calculation
of the random stopping Sr = f d2 bΔΕ(b), in consequence of the δ(k)-function, the
whole contribution comes from the k = 0 region. Then in calculating ΔΕ(b) we
assume that only this region contributes significantly to Syx (k). It should be noted
that the condition k = 0is not directly related to the dipole approximation and
large impact parameter collisions (see discussion in Ref. [3]). After the integration
over the whole momentum k space the analytical result for the stopping power Sr
given by Eq. (21) and for the energy transfer ΔΕ(b) given by Eq. (22) is

where Κ0(x is the Bessel function of the second kind and αm and γm are the
atomic parameters of Eq. (20) and
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where the functions φi(x and ψi(x) determined by the ionic parameters α and γ
of Eq. (20) are given in Appendix B. The effective charge Zell (b), defined as the
energy lost by an ion carrying electrons (and converted into the excitation and
ionization of the atom), related to the energy lost by the proton is

For an elastic collision of an Ni-electron ion with an atom Z2eff(b) is

where, from Appendix B, Saiproton(0) = ¢i(0) = In I2v2/ωal for the proton. It is
clearly seen that Z2eff(b) of Eq. (27) is independent of b. This is a direct consequence
of the accepted approximation (i.e. k = 0) and of the assumption that the ion is not
excited in the collision. In this case the ion acts on the atom (exciting and ionising
it) only as a certain stable distribution of charge and therefore proportional to the
action exerted on the atom by proton at the same impact parameter.

Generally, if we do not use simplifying approximations, even in the simplest,
spherically symmetric ground state of the atom, the one-dimensional integration
in Eq. (22) has to be performed numerically.

The function of Z2eff/Ζ2l for ions of atomic number Ζi, carrying N electrons
in an ion-elastic collision with Al atoms  (Za = 13, ω a = 6) was determined. The
results of Eq. (26) for the Moliere form factor and for ion velocities v ranging from
2 to 10 were drawn in Fig. 1. We choose the Moliere approximation because of its
simplicity which enables analytical calculations and due to the fact that it gives
roughly the correct behaviour for the form factor of heavier atoms. However, the
validity of this approximation is restricted due to the screening parameter,  αTF,
of Eq. (20), which reflects the statistical approach to the description of the atom.

The increase of Z2eff/Ζ? with Zi means, for efficiency of excitations of atomic
electrons, that the screening of the ionic nucleus by the electron plays a major role
at low Ζi and a minor one at higher values. This is quite opposite to the sharp
decrease in experimental Ζ2eff/Ζ2i values with Zi summarized in semi-empirical
formula [19]. In this meaning, the one-electron model fora high Ζ ion beam
is here of restricted applicability, since statistically in a beam the high Ζi ion
tends to bind more than one electron, causing a rapid decrease in the excitation
efficiency. For comparison the results for hydrogen-like one-electron form faction
[9] are drawn in Fig. 1 separately, showing the same overall dependence upon  Zi
but a lower absolute value. The dependence of Ζ2eff/Ζ2i upon the parameter ω, of
Eq. (13), is shown in Fig. 2 for an ion of atomic number Zi = 10 moving with
velocities ranging from v = 2 to v = 10. The function changes rapidly with ω for
low v and ω, while for higher v and ω the dependence is weaker. The crossing point
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is close to ω = 6, the mean excitation energy for an Al atom. For the parameter
ω = ω a the dependence of Ζ f /Ζ? on the number of electrons Ni bound to the ion
is shown in Fig. 3, again for Ζi = 10. The minimum of the stopping was found for
Ni = 3-4, in the velocity range v = 3-10. This effect can be related to the similar
minimum of the random stopping power Sr as shown by Kim and Cheng [7].

According to Eq. (26), derived for the Moliere atomic and ionic form faction
and with the use of the small k form for Syx(k), the function of the Ζ /Ζ? is
independent of the impact parameter b. Also, as shown in Fig. 4, the effective
charge only weakly depends on the ion velocity v when ω = ω a , rises sharply for
ω > ω a and decreases otherwise. This may be related to the results of the shellwise
treatment presented in Ref. [9], which was based on the hydrogen-like form factors.
Also from experiment [19], a sharp increase in Ζ 2eff  /Ζ2i withvcan be obtained,
suggesting that for the system composed of an Al atom and a projectile of Ζi = 10
with one electron Ni = 1 the parameter ω of Eq. (13) should be rather greater
than ω a .

Theoretically the dependence on b and v is caused mainly by differences in the
efficiency of excitation and exchange of electrons from inner and outer shells [18].

The experimental result is influenced by processes of dynamic electron exchange
in the ion beam, by surface effects and many others which cause that results of
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calculations based on such a simplifled model of one-electron ion are not directly
comparable with experiment.

In conclusion, the definition of the mean excitation energy "r, Sr(".) = 0 for
a bare ion in the random case, seems to be a useful tool for a unified treatment of
the random and impact parameter problems, and also for ions carrying electrons.
The validity of this extension, which has to be discussed separately, is confined by
the request that the relation Sr = f d2 bΔΕ(b) must be fulfilled.

Within this approach, the analytical result for Syx(k) can be obtained pro-
vided we replace, as in Eq. (18), the many-body form faction describing both
ion and atom by the incoherent sum of one-electron form factors. The Moliere
approximation to the Hartree-Fock form factor was used here. An analytical re-
sult, although much more complicated, can be also obtained for hydrogen-like
one-electron form factor, the result applicable for ions with a small number of
electrons. If Syx (k) and form faction are spherically symmetric, then the final
one-dimensional integral over k in Eq. (22) has to be performed numerically.

Appendix A

In order to show the validity of Eq. (11a), i.e.

we follow the derivation by Esbensen and Golovchenko [3] given for a system of
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Νx electrons which is described by the H amiltonian

Let us substitute the expression for Z2fX(k, q) of Eq. (10) with the definition of

77(q) from Eq. (5) to get

If we assume additionally that the ground state function is chosen real, i.e.

(r1, rNx|0x) = φ0(r1, rΝx) we can write

Substituting the component with gradient (Α2) into (Al) we find
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And finally we obtain

in accordance with Eq. (ha).
A derivation for Ζ 2fx(k, q) = Σl |ΖxΙ (k, i)| 2 of Eq. (11b) can be obtained by a

straightforward substitution of |Zxl (k, q)12 = F ±(q+ k/2	 (q- k/2) of Eq. (10)
and by using the closure relation to yield

in accordance with Eq. (11b).

Appendix Β

For Z2fX(k, q) given by Eq. (19) and fx (k) by Eq. (20), the integral S(k)
prescribed by Eq. (23) can be calculated analytically with the result
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and for Syx(k), k = Ο case, the result is

where the auxiliary functions φ(x) and ψ(x) are defined as

and for k = Ο the following relations are valid:

The Bethe ligh-velocity  form for a random stopping power which is propor-
tional to the ion (x = i) or the atom (x = a) net charge can be recognized in
Eq. (B2).

References

[1]H. Bethe, Ann. Phys. 5, 325 (1930).

[2]F. Bloch, Ann. Phys. 16, 285 (1933).

[3] H. Esbensen, J.A. Golovchenko, Nucl. Phys. A 298, 382 (1978).

[4] K. Dettmann, Z. Phys. A 272, 227 (1975).

[5] J.M. Mc Guire, J.M. Stolterfoht, P.R. Simony, Phys. Rev. A 24, 97 (1981).

[6] J.H. Giłlespie, Phys. Rev. A 18, 1967 (1978).

[7] Y.-K. Kim, K. Cheng, Phys. Rev. A 22, 61 (1980).

[8] T. Kaneko, Phys. Rev. A 43, 4780 (1991); Phys. Rev. A 34, 1779 (1986).

[9] M. Moneta, Nucl. Instrum. Methods Phys. Res. B 73, 474 (1993).

[10] J.A. Golovchenko, A.Ν. Goland, J.S. Rozner, C.E. Thorn, H.E. Wegner, H. Knud-
sen, C.D. Moak, Phys. Rev. B 23, 957 (1981).

[ii] J.A. Golovchenko, D.E. Cox, N.A. Goland, Phys. Rev. B 26, 2355 (1982).



594 	 Marek Moneta

[12] H.H. Mikkelsen, P. Sigmund, Phys. Rev. Α 40, 101 (1989).

[13]P. Jackson, R.L. McCarty, Phys. Rev. B 6, 4143 (1972).
[14] Η. Morgan, Jr., C.C. Sung, Phys. Rev. Α 20, 818 (1979).
[15] D. Eisenberger, P.M. Platzman, Phys. Rev. Α 2, 415 (1970).
[16] H.Α. Bethe, R. Jakiv, Intermediate Quantum Mechanics, Benjamin/Cummings,

Menlo Park, California 1986.
[17] E.C. Montenegro, W.E. Meyerhof, Phys. Rev. Α 43, 2289 (1991).
[18] M. Moneta, to be published.

[19] H. Betz, Rev. Mod. Phys. 44, 465 (1972).


