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We present a quantum mapping for the kicked harmonic oscillator which
relates the probability amplitudes of the undriven oscillator's eigenfunctions
over successive kicks. We show how for various kick strengths the wave func-
tions lave a linear energy increase up to the limit imposed b y the finite
matrix size of the evolution matrix. We use this linear energy increase to
define a quantum diffusion-like coefficient. We also show how this increase
in energy causes the wave functions to spread out and become diifuse with
fittle or no discernible structure. This model may serve as a paradigm for
the study of quantum chaos.

PACS numbers: 03.65.-w, 05.45.+b

1. Introduction

One of the surprises of quantum chaos was the discovery of scars in the
eigenstate spectrum of quantum systems which are classically unstable [1]. Heller
postulated that they are remnants of the classical unstable periodic orbits (see
Ref. [1] and references therein). In dissipative systems one can completely charac-
terize chaos from a knowledge of the unstable periodic orbits [2, 3]. In both classical
and quantum chaos, knowledge of the orbit structure is fundamental and has been
proved extremely useful in untangling and quantifying the dynamical properties
of the system [2,4].

The model we study is a fundamental one, both in classical and  -quantum
physics [5, 6]. The quantum version we study is more fundamental and complex
than the kicked rotator. The kicked rotator in the classical limit exhibits chaos [7].
However in the quantum version of the problem the chaos is suppressed due to
wave function localization similar to that of Anderson localization in amorphous
materials [8, 9]. Numerical analysis has shown the existence of a close relationship
between saturation of diffusion in chaotic quantum systems and localization length
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of the wave functions (see Ref. [10] and references therein). The question arises
whether the quantum suppression of chaos is generic. Indeed it has been argued
that the saturation of diffusion due to quantum effects is not a manifestation of
quantum chaos and may be present in more complicated models than the kicked
rotator [11, 12]. It has been postulated by Berman that the presence of an extra
time scale (α ln(h-1 )) in the quantum regime might allow for the possibility of
the non suppression of chaos, that is the delocalizatíon of the quantum wave func-
tions and thus the non linearly kicked oscillator model would be a simple example
where there would be quantum chaos [6]. It has become necessary to obtain a
more detailed and quantitative understanding of the mechanism of diffusion in the
quantum limit.

In this paper we present a quantum mapping which relates the probability
amplitudes, Am (t), over successive kicks. The classical version of this quantum
mapping is known to be chaotic with positive Lyapunov exponents and extensive
Κ.Α Μ. torí breakup, with changes in parameters, in the classical map's stochastic
layer [13]. It is our intention here to show how, using the quantum mapping, the
calculated energy, E(l), of the system has a linear-like increase which does not
saturate within the time limits imposed by the finite size of the evolution matrix.
Furthermore the time derivatives of these energies, 8Ε(t, μq)/8t, as a function of
the kick strength, μg , increases non linearly as the kick strength increases. In light
of these results we aim to show that within the time limits imposed b y the finite
evolution matrix size the energy does not saturate and the wave functions are
spreading out in an unbounded fashion.

2. Quantum mapping
The wave functions, ψ(Q, t), for the kicked harmonic oscillator satisfies the

time dependent Schrődínger wave equation given below

where Q is dimensionless position, μ y is the strength of the kick term, w o and ω 1
are the frequencies of the undriven oscillator and the kicks, respectively and K is
a dimensionless parameter determining the periodicity of the cos term. The wave
functions, ψ(Q, t), are composite being made up of a linear combination of the
eígenfunctíons, υn (Q), of the system with the time dependent coefficients Α(t)

where the υ(Q) are the eigénfunctions of the undriven oscillator with the prob-
ability amplitudes, An (t), relating the undriven oscillator's eigenfunctions to the
driven composite wave functions, ψ(Q, t), in Eq. (2). As expected the amplitudes
are complex. The eígenfunctions for the undriven oscillator are [14]
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where Η(Q) are Hermite polynomials. The motivation behind this derivation
stems from the well-documented existence of chaos in the classical limit [13] and
the possibility of chaos existing in the quantum regime of this system as postulated
by Berman et al. [6]. We now derive a mapping which relates the probability
amplitudes from one kick to the next. Between successive kicks (from t = (Nτ)+
to t = ((Ν. + 1)τ) for the N-th and(N +1)-th kick) the system behavesasthe
undriven system. Therefore any wave function ψ(Q, t) evolves as

where t is restricted to the time between kicks and the Εn are the energy levels
of the undriven system given by (n + 1/2)!k0. Across any kick the wave function
changes discontinuously by the amount μ q cos(KQ). Thus we can relate the wave
functions from just before the N-th kick (at time t = (Nτ)) to just after it (at
time t = (Nτ+)) via the following identity:

where we have substituted for ψ(Q, (Nτ)) using Eq. (2). Using the identity
(Eq. 8.511(4) in Ref. [15])

where J3 is the s-th Bessel function of first kind, we can relate the evolution of the
wave functions over successive kicks

If we substitute Σr=∞r=1Ar(((N + 1)τ)-)ur(Q) for theψ(Q, ((N +1)τ)) and then
take the expectation value of each side of the expression in Eq. (6) with um (Q), we
can relate each of the probability amplitudes at the later time, Am (((N + 1)τ)- ),
to those at the earlier time, Α ((Nτ) — ), by varying m over all the eigenfunctions,
um (Q); i.e.

The bra-ket term above can be calculated by evaluating an integral over the
Hermite polynomials constituting the um (Q) and up (Q). Using the identity
(Eq. 7.374(7) in Ref. [15])
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which is valid for m < p we find that our expression for the probability amplitudes
in Eq. (7) becomes

which is valid for m < p. However, the Hm (x) and Ηp(x) in Eq. (8) can be swapped
giving us a complementary expression for the case p < m which is identical to
Eq. (9) except for the substitution of m for p. This fact is very important as we
will now show. Upon examiination of Eq. (9), the only term which depends on time
on the right hand side is Α. All the others are time independent allowing us to
group them together as a single time invariant term which we call U

The term Ump is the mp element of the inflnite time-independent square matrix,
U, which evolves the system forward in time. Furthermore, as we can interchange
the m and p in Eq. (9) above to evaluate the case when p < m, one can easily
check that the matrix is symmetric (i.e the transpose of U is U)

We refer to U as the time evolution matrix of the system. Knowing the time
evolution of the amplitudes allows us to calculate the time evolution of the system's
wave functions, ,fi t , and the total energy of the system, E. Thus, for any wave
function, b, we calculate the energy to be

The numerical work to calculate the matrix U relied on the tuncation of the
summation over s in Eq. (7) brought about by the exponential term, exp(-s 2 K 2 ),
and the Bessel functions. This truncation enabled the matrix to be numericahly
evaluated. Once calculated this matrix, U could be used for the parameter set
which gave rise to it for any time length up to and including the finite size of the
matrix calculated.

3. Results

The initial distribution of the probability amplitudes, Am (0), is a mixed
parity state having a gaussian profile of the amplitudes, centred on m = 10. We
chose a low value of m primarily because of the size limitations on our calculated
evolution matrix U. The evolution matrix U was restricted to a 350 x 350 matrix
with the implication that, any state which spreads, or diffuses, so that the ampli-
tudes near the m = 350 boundary are becoming increasingly significant, there is
an artificial time limit imposed beyond which the results are boundary influenced
and hence untustworthy.
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In Fig. 1 we present the case for the quantum mapping when β = π/2
and μ q = 1.5. It is apparent that the initial distribution of amplitudes rapidly
becomes spread out over the complete subset of amplitudes calculated for the
evolution matrix, U. The spreading was so rapid that, just over forty iterations
after the initial state, the calculations were stopped as the upper boundary of the
probability amplitudes had been reached. The following condition was used to stop
the calculations: if the magnitude of the amplitude for m = 340 was greater than
10 -30 then the calculation stopped. Thus the magnitudes of the amplitudes above
340 were non-contributory. In fact one can see from the results presented in Fig. 1
that m is not shown above 200 because of its small size. Larger matrices should
provide better long term behaviour and this is being pursued by considering the
behaviour of individual elements in the matrix itself. The principle diagonal is the
dominant part of the evolution matrix with the off diagonal terms falling off rapidly
each side of this principle diagonal. The rapidity of fall off is naturally inversely
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dependent on the size of the kick strength μ q and, for the range of kick strengths
considered in this article, were found to drop below 5 orders of magnitude within 50
elements of the principle diagonal. This allows us to evaluate larger arrays by just
evaluating a tract of 100 elements wide centred on the principle diagonal instead
of half the n x n matrix (the symmetry of the matrix necessitates calculation of
only half of the matrix).

In Fig. 2 we present the probability amplitudes for the corresponding case in
Fig. 1. These plots show the system at the corresponding times to those in Fig. 1
and show the rapid spreading inherent in the system for the chosen set of values.
What is also apparent from these six plots is the rapid onset of diffusivity in the
probability amplitudes as time increases. To further analyse the system for this
kick strength and for kick strengths close to this value, we calculated the energy
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of the system as a function of time. This serves as an indicator for localised or
de-localised behaviour in the system. In Fig. 3 we give a composite energy plot of
five different kick strengths over a specified time. The linear nature of these energy
curves suggests it might be possible to evaluate a quantum diffusion coefficient,
Dq (μq ). There is a number of problems associated with this exercise including the
small time interval over which the energy does not saturate by impinging on the
boundary, the requirement to calculate a new evolution matrix for each value of
the kick strength and the need to average over a set of states which is further
limited by the finite size of the unitary matrices. however, we have calculated a
number of matrices of size 350 x 350 and for these matrices the energy increases
linearly and we are able to calculate a quantum diffusion coefficient, Dq (μq ), which
we define as

The result is presented in Fig. 4. There is an enhancement at μ q = 1.5. However,
at flner resolution we found the neighbouring points to be well behaved (in the
sense they followed the general trend of the curve) but the slope of the energy at

μq= 1.5 took a definite jump. This occurrance at close to π/2 cannot be discarded
and may be a kind of enhancement similar to the classical enhanced diffusion due
to accelerator islands [16]).
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It could be argued that the time taken for the saturation to occur is not
long enough to be conclusive of an energy saturation. Indeed taken alone such
time evolutions are not capable of proving the energy will never saturate or that
the wave functions will never become localised. What did in fact convince us of
the possible existence of delocalised wave functions and a continued increase in
the energy evolution was the calculated Wigner distribution [17], PW(Q, P), (or
quasi-phase space) at various time steps for the given kick strength. The distribu-
tion evolved from its initial mixed state to a state whose quasi-phase space had a
striking four-fold symmetry reminiscent of the tiled structure seen in the classical
phase space for the value of β chosen (i.e. β = π/2) (see Ref. [13]).

For the classical oscillator on resonance and chaotic, the stochastic layer
has a crystalline (or quasi-crystalline) stucture depending on the ratio ω0/ω1 =
n/m with n, m E Z. The Wigner distribution is shown in Figs. 5a and 5b, it
is finite in size because the upper limit imposed on the calculation by the finite
matrix Size limits the highest order eigenfunction used in the calculation which
in turn limits the extent of the distribution. As time progresses we expect the
wave functions to continue spreading over the undriven system's eigenfunctions
thus rendering a continued extended tiled stucture in the quasi-phase space of
the Wigner distribution. The beginnings of this extended stucture can be seen by
examining Fig. 5a. The corners of the inner 3 x 3 square region in the distribution,
though tuncated due to the finite array size, clearly extend beyond the region
given whereas at the top, left, bottom and right middle positions the edge of
a new set of islands is also apparent. Furthermore, this tiled stucture with its
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clearly defined circular islands indicates that some orbits may exist in this system
which have signiflcant overlap with the regions between the islands which in the
classical regime corresponds to the sochastic layer region of unbounded, diffuse
transport. Furthermore these orbits could be spreading out rapidly if the influence
of these inter-island regions in the Wigner distribution is directly comparable to
the classical stochastic layer.

4. Conclusions

We have derived a mapping for the quantum non linearly kicked harmonic
oscillator which maps the probability amplitudes at each time step to the set of
probability amplitudes at the previous time step. Using this mapping we have
shown the existence of states whose time dependence on energy is linear and
for whom a diffusion-like coefficient can be defined which increases non linearly
with the kick strength, μ q . These results, coupled with the stucture found in the
quasi-phase space of the Wigner distribution for the system, seem to indicate the
existence of states in this system whose energy does not saturate and the possibility
of delocalised orbits which spread out rapidly along an apparent quantum version
of the classical phase space stochastic layer.
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