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The classical equation of motion for a particle moving in the new double-
-welI potential V(x) = 1/2V0(A coshax-1)2is solved exactly for different
values of the parameter A and the energy constant E. The solutions in
various special cases are discussed.

PACS numbers: 03.20.+i

1. Introduction

Strongly anharmonic potentials are of great interest in various branches of
physics. The best known one-dimensional potential is the potential of the form

which for A > 0 and B > 0 is a double-well potential. It is well known (see e.g. [1])
that the classical equation of motion

for the potential (1) can be integrated with the use of the energy integral

Recently the anharmonic potential of the form

where V0, A and α are the positive constants, has been studied [2]. This potential is
related to the double Morse potential, used in the theory of hydrogen bonded fer-
roelectrics [3], and to the Razavy potential [4]. Similar potential has been proposed
by Zaslavsky and Ulyanov [5].
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This potential has an interesting property. For some values of the parameter
V0 the one-dimensional Schrödinger equation can be solved exactly and a few
energy levels and the corresponding wave functions can be found in analytical form.
Hence, the potential (4) belongs to the class of quasi exactly solvable potentials
(investigated e.g. in Refs. [6] and [7]). However, the hidden symmetry [8] underlying
this property does not appear in the classical case. It is well known that the φ4
potential (1) does not possess this property.

It is evident that the potential (4) is a double-well potential for 0 < A < 1
(Fig. la) and it is a one-well strongly anharmonic potential for A> 1 (Fig. c).
We note that for A = 1 the potential (4) is very flat in the vicinity of the point
x = 0 (Fig. lb).

Introducing the notation

we write Eqs. (2) and (3) with the potential (4) in the form

In this paper an extensive discussion of solutions of the classical equation of mo-
tion (7) will be presented. The paper is organized as follows: in the subsequent
Secs. 2-4 the equation of motion will be solved for three different forms of poten-
tial (4), whereas in Sec. 5 the case of the reversed potential is described; the final
discussion and comments are given in Secs. 6 and 7.

2. Double-well potential

First, let us consider the case when 0 < A < 1. From the equation of mo-
tion (6) written in the form

we see that the system has the following critical points:
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• the saddle point: u = 0, ú = 0,
• two centres: u = u0, ú = 0, and u = -u 0 , u = 0,

where cosh u0 = Á > 1.
Schematically the phase portrait is presented in Fig. 2a. The phase trajec-

tories are closed curves, corresponding to oscillating motion. The separatrix is
associated with the energy ε = 1 — A, and its two branches are described by the
equation

It separates the oscillations of different character: the oscillations of small ampli-
tudes around the equilibrium positions fug are separated by separatrix from the
oscillations with the large amplitude around the point u = 0. Introducing the new
variable

we transform the equations of motion (6) and (7) into

respectively. Note that an equation of the same type appears when the sine-Gordon
equation is solved, whereas for the Korteweg-de Vries equation only terms up to
the third order in z appear [9].

The last equation can be integrated using the Jacobi elliptic functions [6].
To do this we express Eq. (9), in the canonical form of differential equations for
the Jacobi elliptic functions [10]:
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i.e.

where k is the modulus, Ο _< k < 1, and k1 the additional modulus, k21 = 1— k 2 of
an elliptic function. Let us remember that the real period of the functions sn(τ, k)
and cn(τ, k) is 4K(k) and for the function dn(τ, k) it is 2K(k), where

is the complete elliptic integral of the first kind.
The character of the motion of a particle depends on its energy E (or on the

value of the dimensionless energy parameter ε (5)). The following particular cases
have to be distinguished:

The particle moves in one of the potential wells (for definiteness in the right).
In this case Eq. (9) has the solution

Let us remark that due to the relation

the oscillations of the particle are restricted to the region

i.e. the particle moves between the turning points of the potential for a given value
of the parameter ε.

When the energy of the. particle is equal to the height of the potential barrier
ε = 1 - A (in the phase space the motion is on the separatrix), k = 1 and

In this case the motion is aperiodic and
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The energy of the particle is greater than the height of the potential barrier.
In this case Eq. (9) has the general solution

In particular limits, the solution (11) behaves as follows:

Hence,

which coincides with (10).

describing the periodic motion.

In this case Eq. (9) has the solution

We notice that for ε -i 1+ A, k —> 0 and sn(υ, k = 0) = sin g = cos(υ  - π/2). In
this limit (13) does not coincide with (12), but is shifted by π/2.
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3. Flat bottom potential
In the special case when A = 1 the potential (4) is very flat at the bottom

and takes the form

Equations (6) and (7) take the form

The phase portrait is presented in Fig. 2b. In this case only the anharmonic
oscillations can take place. Equation (9) reads

The solutions of this equation in two special cases are the following:

Let us remark that for ε = 2 we have k = Ο. Therefore, due to the relations

we obtain the periodic solutions

The solutions in both considered ranges of variation of the parameter ε differ only
by phase shift.

4. One-well anharmonic potential
Finally, we consider the case A > 1, i.e. single well anharmonic potential.

The phase portrait for this potential is presented in Fig. 2c. In this case ε > A- 1
and the solution of Eq. (9) has to be considered in two ranges of the parameter ε:

In this case the solutions seem to have the same character as in the preceding
cases, but in fact it turns out not to be the case (see Sec. 6).
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5. Reversed potential

It is interesting to consider the case when V0 → -V0 , i.e. the potential

We investigate the case when the energy of the particle is nonpositive, E < 0,
leaving the notation unchanged with one exception

The equation of motion and energy equation have the form

The phase portrait of the system is presented in Fig. 3b. We see that the
system has the following critical points:

• the centre: u = 0, u = 0,

• two saddle points: u = fu g , u = 0, where cosh u 0 = Á.
We consider only the case

when the oscillations of the particle within the well take place.
When ε = 0 the particle moves on the separatrix

The points, where the separatrix intersect the u axis, correspond to the points of
local maximum of the potential.

Using the variable
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we rewrite Eq. (16) in the form

where

and Eq. (17) can be rewritten in the form

where we have introduced the new variable

and

It is clear that this equation is of the type

and its solution is

z(υ) = z2 sn(υ, k),

or in explicit form

Let us consider the limit when ε = 0, i.e. the motion of the particle on the
separatrix. In this case k 2 = 1 and

Therefore the solution takes the form

In the other limit ε = 1 - Α, we have the trivial solution z(t) = 0, i.e. the
particle is at rest in the equilibrium position at the bottom of the potential well.
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6. Discussion

Solutions of the equations of motion (2) for the potentials (4) and (14) are
obtained by inverting the formula (8) using (5), which gives

The results are given for these potentials in Table I and Table II, respectively. Let
us shortly discuss their properties.
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In the case of double-well potential, 0 < A < 1, the motion of a particle of
energy lower than the height of the potential hump, ε 2 < (1- Α) 2 , is qualitatively
close to harmonic oscillations, which is still tue even for relatively high energies,
as it is shown in Fig. 4a.

The character of motion changes only as ε approaches 1 — A, exhibiting
the characteristic features of Jacobi delta amplitude function (see Fig. 4b). The
solutions of this type are characteristic for double-well potentials; as an example,
we compare the solution for the potential (4) with the solutions for the potential (1)
(cf. e.g. [1])

The difference between the potential (4) and the potential (1) becomes im-
portant when the amplitude of motion in terms of z approaches 1, because of
the properties of the atanh function. The solution of the equations of motion for
Á = 0.01 is shown in Fig. 4c.

Figure 5 shows the aperiodic solution of the problem for ε = 1 - A.
When the a ^ergy exceeds the height of the inner barrier1- A < ε < 1+ A,

the character of the solutions obviously changes. The solutions for energies slightly
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higher than the potential hump expressed in terms of the z variable have the form
of Jacobi cosine amplitude function with modulus close to 1. The characteristic
form of this solution is shown in Fig. 6a. For higher energies, the solutions have
the form of Jacobi sine amplitude function with the modulus k approaching 1,
as the energy increases to infinity. This constitutes a considerable difference in
comparison with the φ4 problem. Note that

According to the corresponding formulae (Table I, n.le), the function x(t) in this
limit becomes nearly linear, whereas the solution of the Y,14 problem has the form
of Jacobi cosine amplitude function with k —ł 1/' as ε → οο. The solution in
this case is shown in Fig. 6b. It is a characterstic feature of the potential (4) that
in the limit of infinite energies the oscillations resemble the motion of a particle in
an infinite square well.

The solutions for the flat bottom potential (Table I n.2) for low energies have
the form of atanh of Jacobi cosine amplitude function with the modulus k <

For the strongly anharmonic single-well potential, the solutions in lower
range of energies have the form of Jacobi cosine amplitude function, slightly in-
fluenced by the atanh function, with the modulus k close to zero for low energies,
then growing to certain maximal value and decreasing again to zero for ε = A +1
(Table I n.3).

The solutions for high energies are the same for all the potential types.
Figure 7a shows the solution for the reversed potential (14), (see Table II),

when the energy is well below Ο. On the next figure (Fig. 7b) the solution for ε
close to Ο is shown. The solution exhibits the typical shape of Jacobi sine amplitude
function. The influence of the atanh transformation is rather small for this value
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of A. Figure 7c contains the solutions for ε = 0. In this case, the system shows
aperiodic behaviour.

7. Conclusions

In this paper the strongly anharmonic one-particle potential (4) has been
studied in the classical limit. The exact solution of the equation of motion was
found in the whole range of model parameter covering the cases of double-well and
single-well potential. Despite the general similarity to the well-known φ4 potential
it seems worthwhile to underline some characteristic differences between these two
potentials which might be important from the point of view of their applications.

The potential barrier in the double-well case, A < 1, becomes wide and flat
in the limit of A -i 0 (see (4)). Although this does not influence the classical solu-
tion it would be essential in the quantum limit for exactness of the quasiclassical
approximation. Similarly, for increasing energies the exponential character of the
potential (4) becomes apparent, leading to nearly free motion between the turning
points. This suggests that in the quantum limit the spectrum should resemble that
of an infinite square well.

Finally, let us remark that the results of the present paper can be applied
in several solitonic problems, like classical theory of the hydrogen bond (see e.g.
[11]) and in the theory of hydrogen bonded linear chains [12]. It is also interest-
ing to compare the result (10a) with solutions appearing in the theory of KdV
and modified KdV equation, where the functions (cosh αζ) -2 (corresponding to
the Pöshl-Teller potential) and (cosh αζ) -1 appear [13-15]. Both of these func-
tions correspond to reflectionless potentials. This may allow the inverse scattering
method to approach to the soliton dynamics of chains with the potential (4). This
will be examined in future works.
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