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Coupled nonlinear integrable systems in (2 + 1) dimension are gen-
erated from a matrix Schrödinger-like inverse problem and solved explic-
itly to demonstrate a new phenomenon of overturning. Both, the two- and
three-dimensional graphical depictions of the solution are presented. Our
analysis is an extension of the uncoupled case reported earlier by

Bogo-yavlenskíí. A unique feature of the solution is the occurrence of arbitrary
functions of ( y , t) in its functional form, which significantly changes the be-
haviour of the solution.

PACS numbers: 02.90.+pa, 52.35.Νx, 52.35.Sb

1. Introduction

Solutions in (2 +- 1) dimension were first studied in connection with the
Kodomstev-Petviashville equation. Since then several other equations in (2 + 1)
dimenSion have been analysed in relation to the theory of inverse scattering in mul-
tidimension [1]. Many new properties can be seen to be exhibited by such solitons
which are not displayed by their counter part in (1+ 1)-dimensional systems. One
among such intriguing phenomena is that of overturning which was first discussed
by Bogoyavlenskii [2] in the case of an equation in (2+1) dimension which reduces
to the Kortewege-de Vries (KdV) equation if we set x = y. Here in this paper we
have studied a nonlinear coupled system in (2 + 1) dimension, with the help of
a matrix Schrödinger-like linear problem [3]. It is interesting to observe that due
to the multidimensional character some arbitrariness remains inherent regarding
the dependence of the soliton on the variables (y, t) which, if chosen properly, can
lead to a certain interesting phenomenon regarding the structure of the solton.

(459)



where L is the space part of the Lax pair containing derivatives with respect to x.
It may be noted that the compatibility of Eqs. (2) and (3) leads at once to Eq. (1).

Let ψ(k, t, x, y) be the 2 x 2 matrix of the Jost function satisfying

In a matrix form we can rewrite L as
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2. Formulation

A matrix nonlinear system in (2 + 1) dimension is written as

where Wx = 1/2 [Ux , Uy ] and [ , ] a commutator. Ux denotes δU(x, y , t)/∂x. U being
a general 2 x 2 matrix potential. The Lax pair associated with Eq. (1) can be
written as

where

with V = Uy and W as defined above. So the kind of the Lax operators we are
considering, belongs to the class discussed by Zakharov [4], where the time part
had the general form

where U is assumed'to have the following asymptotics:

and for the time being g, h are arbitrary 2 x 2 matrix functions. We observe that in
such case (Ι —*0 as k|x|→∞ and Uy (t, x, y) → gy , h y for x —> moo. Furthermore,
we assume that U is a continuous and decreasing function of x. In the following
we summarise some already known features of the inverse scattering procedure for
the matrix Schrödinger equation. For real k, Jost functions F, G are defined by
the asymptotic relations

(where Ι denotes the identity matrix) with the usual analyticity arguments re-
maining valid. Here it is to be remembered that k = k(y, t). Furthermore, the
pairs {F(k, t, x, y) , F(—k, t, x, y)} and {G(k, t, x, y) , G(-k, t, x, y)} are the funda-
mental systems of solutions whence the linear dependence of the Jost functions
can be expressed as
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The compatibility of Eq. (8) requires

It is well known that the coefficients A, B, C, D can be obtained via the Wronskian
of F, F*,.G, G* from which we observe

The bound states of the spectrum which actually correspond to the soliton solution
are determined from the condition,

In the case of a given value kj there will exist a vector α such that

whence a solution of (2) can be represented as

The asymptotic conditions (7a) indicate that

On the other hand the Hermitian nature of the potential implies that k = ip j,
where Pj is a real positive numbers. So we can infer that the bound states corre-
spond exactly to the points Im{k} > 0, Re {k} = 0, where det {A(k)} = 0. So
that A -1 (k) has a pole. From a study of the asymptotic behaviour of the Jost
functions in the complex k-plane it is not difficult to show that

so that the singularities of the matrix A -1 (k) in the upper half plane are simple
poles and form a finite set. Therefore we have
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3. Time evolution
Since a consistency of Eqs. (2) and (3) expressed as

leads to Eq. (1), we can deduce at once that

where k is the wave vector. Using the fact that the eigenfunctions ψ(k, t, x, y)

depend on two spatial dimensions x and y and the asymptotics

where I denotes the identity matrix.
We obtain

which at once leads to

so that the eigenvalue f = k 2 = —p2 satisfies the equation

The inverse problem for the matrix Schrödinger problem can now be set up by
assuming the Jost function. F(x, k, t, y), as

with the condition that K satisfles

Operating with Α-1 from the right on Eq. (8), we get

Taking the Fourier transform of Eq. (23a) and using Eqs. (21) we get

This way Eqs. (24) and (25) form the basic equations of the inverse problem for
the matrix Schrödinger equation. 	.
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4. Construction of one soliton solution

Keeping only the discrete part in Eq. (25) corresponding to the single pole
in R we can at once solve Eq. (24) and obtain the following integral equations in
the component form

which yield

• 	 with similar expressions for L12, L21 and L22. The parameters (α,  β, γ, δ) are
expressed by Αij , Βij in the following way:

Now, if we refer back to Eq. (20) we observe that the time evolution of Aid and
Βij can be obtained as

Xij , Cij are arbitrary functions and C0 = (t + 1)/(y + 1) with the conditions

g1y = G(y)(t + 1)1/2, h1y = H(y)(t + 1)1/2.

Equations (26), (27), (28) and (30) determine the form of the soliton in (2+1)
space-time.
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5. Form of the soliton and overturning

To understand the behaviour of this soliton solution we analyse its behaviour
graphically. In Fig. 1 we have depicted a twodimensional section of the solution
given by Eq. (27) for the choice of the functions and the parameters as specified. It
is easy to observe that the soliton suddenly turns around and becomes peaked in
the reverse direction. In Figs. 2a and b we show a corresponding three-dimensional
plot at t = 0, which also exhibits the same phenomenon. To study the propagation
of such a waveform we next consider its form at t = 0.75 and display its subsequent
form in Figs. 3a and b. The corresponding forms for the negative values, at t =
-0.75 are shown in Figs. 4a and b. Note that for these diagrams we have chosen
g1y = - h1y = y(t +1)-1 /2 . On the other hand a different choice of these functions
is also possible and we have considered the case g1 y = - h1 y = [(y +1)/(t + 1)] 1 / 2 ,

whence one observes that the distinct overturning behaviour disappears and the
two and three-dimensional forms are depicted in Figs. 5a and b. This shows that
the functional behaviour of the soliton depends on y and t can be adjusted to
change its characteristics.
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6. Discussions

In our analysis above we have shown a new type of behaviour for the case
of a solitary wave in (2+1) space-time. It is also interesting to note that such
behaviour can be changed by changing the arbitrariness of the dependence on
(y , t) coordinates.

One of the authors (C.G.) is grateful to C.S.I.R. for a fellowship.
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