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We show that in magnetic metallic superlattices along with the bilinear
RKKY-reminiscent interaction between magnetic superlattices there can be
an important quadrupole-quadrupole coupling. In an analytical way we de-
rive the range functions of the quadrupol-quadrupole interaction and discuss
its relation to magnetoresistivity.
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Since the discovery of antiferromagnetic coupling of ferromagnetic layers
across a nonmagnetic metallic spacer layer, the magnetic superlattices (SL) have
become an object of intense interest of both theoretical as well as experimental
studies. The problem of RKKY-reminiscent spin polarization oscillations, with a
long period and giant interface magnetoresistance attracted the most attention.
The recently discovered, π/2 coupling between magnetizations of the neighbour-
ing magnetic layers [1] added new interest to the problem. This type of ordering
suggests that along with the bilinear coupling of the type J 1 m1 • m2 between mag-
netizations of adjacent layers there is an additional multipolar interaction. There
were many attempts describing the mechanisms that give rise to biquadratic ex-
change, being a speciflc form of coupling between magnetic quadupole moments
of the ions (for details see Refs. [2, 3] and references therein).

The aim of the paper is to study a new intrinsic mechanism that origi-
nates in multipolar exchange coupling. In the following we will show that the
quadrupole-quadupole coupling can arise in a quite natural way from direct
scattering of conduction electrons on magnetic multipole moments in the man-
ner similar to bilinear RKKY interaction. The starting point for any description
of metallic magnetic systems is the case of dilute alloys, when a few TM or RE
ions are immersed in the sea of conduction electrons. The coupling of the ionic
spin Sn with the itinerant electron spin σ is usually taken as the contact interac-
tion [4]: Hex = -2JSn σδ(r). In the case of non-s magnetic ion state along with
the scattering due to dipolar contact interaction there appears also scattering of
conduction electrons on quadupolar moments. Kondo [5] has proved that the
interaction Vqc (k) between conducting electrons and the quadrupoles is given by
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where σ, k, σ1, and k1 denote the spin and wave vector of the impact and scattered
electron, respectively. D is a constant that determines the strength of the scat-
tering potential. Let us consider the quadupole–quadrupole interaction mediated
through the conduction electrons scattered on the ionic quadupole moments ac-
cording to Eq. (1). Since we are interested in the metallic system with superlattice
(multilayer) symmetry we must account explicitly for the anisotropy associated
with the growth direction. The wave function of conduction electrons in the lay-
ered system with modulation along the z-axis has the following general form [6]:

where we have used the notation R = (p, z), p = p(x, y), K = (k, K). A — is the
area of the region to which the motion of the electrons is confined. In the case of
a SL consisting of thin magnetic, isolating layers separated by the nonmagnetic
metallic spacers the single particle spectrum of our system is given by [6]

where T is the hopping integral and α denotes the SL modulation period. It is
evident that Eq. (3) describes spectum of mobile charge carriers also in the case
when both constituents of SL are metallic. Assuming that the electron is described
by the Bloch functions ΨK given by Eq. (2) the matrix element for the scattering
from electron state K to state Κ 1 by the ionic quadrupole moment is given by

where S; and n denote the x, y and z components of the spin operator Sn and
the unit vector n = Κ/|K| while Q denote the respective components of ionic
quadupole moment

Interaction (1) manifests itself in anisotropy of magnetoresistance [7], i.e. the
resistivity p is different according to whether the quadrupole axes are parallel or
perpendicular to the current direction. As it has been shown [8] the anisotropy of
resistivity is given by

where (...) and Q denote the thermal canonical average and quadupolar order-
ing parameter, respectively. In the bulk systems, using formulae (1-6) one can
determine the quadupole term of localized moment-conduction electron interac-
tion [7]. Since for some multilayered systems a giant magnetoresistance is observed
one would expect that the interaction (1) is relatively strong and dominates other
mechanisms of biquadratic exchange.
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Let us assume that the interaction between itinerant and localized moments
is dominated by the potential given by Eq. (1). Similarly as in the case of dipolar
contact scattering leading to RKKY coupling there should appear indirect coupling
between quadupole moments mediated via conduction electrons. Let us follow the
perturbation procedure. Assuming that all conduction electron states below the
Fermi level εF are filled for both spin states the interaction between two quadupole
moments is mediated via double scattering (K --ł K' .—ł K) with εK < εF and
εκ' > 6F. The occupied K states fill in K = (k, K) space the region limited by the
conditions KΕ (-q0, q0) (q0 is the wave vector that describes the SL period) and
k 2 < kF (K), where kF in view of Eq. (2) is given by

Under above-mentioned assumptions the interaction between quadrupole moments
of magnetic ions (Qi and Q j ) is given by [4]

where Λγδαβ(|Ri - Rj |) is the range function of RKKY-like quadrupole-quadupole
interaction [4, 9], located at lattice sites Ri and Rj , respectively

where in view of Eq. (4) Δ ß ' is the matrix element for the scattering from
the electron state K to K' by the quadupole component Q. It is impossible to
perform the integrations in Eq. (9) in an analytical way. However, we can gain
information about the spatial dependence of the exchange parameters Α. First of
all let us note that due to the symmetry of the integration region among many
possible coupling parameters only these for which α = γ and β = δ are nonzero
(i.e. A^ß(|Ri - R) Ο 0). Moreover, using the procedure derived in paper [9] we
can gain information about the oscillation period in the case when the interacting
quadupoles are displaced along the line parallel to the growth direction of the SL.
In this case we can prove that the range functions of the quadrupole-quadupole
coupling behave as

Thus, the indirect multipole interaction in SL behaves in a similar way as the
RKKY-like bilinear interaction. This resembles the situation in bulk metallic sys-
tems, where the biquadratic exchange has the same range function as the RKKY
one [10]. The interaction (8) favours ferroquadrupolar ordering of the magnetic
quadupoles that belong to adjacent magnetic layers, therefore this mechanism
cannot explain why in some SL system there appears perpendicular ordering
(antiferro-quadrupolar ordering). It is evident that in these systems another mech-
anism dominates, this is probable the mechanism associated with layer thickness
fluctuations [11, 12].
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