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The sounds used in music have discrete spectra consisting of a funda-
mental frequency and of its integer multiples. This is the reason for an affinity
of the sounds for which the ratio of the fundamental frequencies is given by
a fraction of small integers. Two possible physical mechanisms for this affin-
ity are discussed: (1) an influence of beats between some partial tones and
(2) nonlinear interactions between partial tones. Some facts from the music
theory are then explained as resulting from the invariance of the most con-
sonant intervals between affine sounds against variations of the timbre and
of the register. An analogy is indicated between the classical cadence and
the lock-in effect in incommensurate crystals. The lecture is illustrated with
extracts from the J.S. Bach Das Wohltemperierte Klavier, the W.A. Mozart
sonata for piano KV 570 and a recitative from the Haendel Messiah.

PACS numbers: 43.75. + a, 43.66.+y, 43.64.+r

1. Introduction
The sounds used in the polyphonic and harmonic music are produced by

one-dimensional standing waves generated in almost dispersionless objects such
as strings and columns of air. The spectum of every such sound consists of a
fundamental frequency and of its integer multiples called higher harmonics or par-
tial tones. The distribution of the intensity among particular harmonics in the
spectrum of a given sound determines its timbre. It was established that the de-
pendence of the timbre on the phase shifts of the harmonics is very weak [1]. The
pitch of a sound depends on its fundamental frequency in an approximately loga-
rithmic way so that the difference in pitch of two sounds, called musical interval,
corresponds to a given ratio of the fundamental frequencies.

One can easily verify, using e.g. a monochord, that the sensation produced
by two simultaneous sounds whose fundamental frequencies form a ratio of small
integers, such as 2:1, 3:2, 4:3 etc., is pleasant, harmonious and mild, whereas the
ratios of the fundamental frequencies expressed by higher integers or by irrational
numbers give an unpleasant and rough sensation. In the former case one speaks of
consonance and in the latter of dissonance.

(265)
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The ules of the counterpoint and of the harmony require that a dissonance
should be solved onto a consonance. An example of that is given in Fig. 1 which
is an extract from the Mozart sonata for piano KV 570. Listening to the sequence
of accords marked by the asterisks * and * * one can ask whether the self-evident
tendency of the first of the accords to be followed by the second one is a result of
our habit fixed by tradition or it stems from some deeper natural laws.

2. Helmholtz's model for the perception consonance
The first attempt to answer this question on the basis of a physical model

has been given by von Helmholtz in his famous book on the sound sensations [2].
The model of Helmholtz summarizes his observations of the anatomy of the

ear. The organ responsible for the pitch perception is located in the cochlea. The
latter is a tube wound in a spiral form and fllled with a liquid. The tube is divided
into two parts by a membrane, called basilar membrane, parallel to the axis of the
tube. The basilar membrane consists of transverse fibers, each of them attached
to an ending of an auditory nerve.

The assumption of Helmholtz was that every fibre of the basilar membrane
operates as a resonator "tuned" on one particular frequency in analogy to the row
of strings in a harp. Whenever a sound of a given frequency is sent to the ear,
the corresponding fibre starts to vibrate as a result of the resonance. Since the
membrane is immersed in a liquid, every such resonance has a certain width.

Now if the membrane is stimulated at the same time, by two different fre-
quencies, two resonances arise. The sensation of roughness or dissonance is re-
lated, according to Helmholtz, to the beats provoked at those locations of the
basilar membrane which are excited simultaneously by two different frequencies.
This happens whenever the resonance curves corresponding to different frequencies
overlap. If the frequencies of the incident sounds are well separated, the frequency
of beats is too high to be perceived because of the limited time resolution of
the human senses. Moreover, the amplitude of beats then is relatively small. In
the other limit case of both frequencies very close to each other the frequency of
beats, being the difference of the incident frequencies, is small and is perceived as
a pleasant waving of the sound — a "tremolo". however, when the difference of
the frequencies approaches about 33 Hz, the sensation becomes rough analogously
to the sensation produced by the consonant "r" pronounced in Polish, Spanish or
Italian manner.

Helmholtz proposed an analytical expression for the sensation of the rough-
ness as a function of the difference in frequency. The corresponding curve is shown
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in Fig. 2. The region in which the curve differs significantly from zero has been
called "critical band". As it has been shown by Plomp [3] the width of the critical
band depends somewhat on the average of the incident frequencies.

In order to get the curve representing the roughness of two complex sounds
one has to add the roughness produced by all pairs of the partial tones involved.
The resulting curve depends on the timbre of the sounds in such a way that the
roughness increases whenever two strong partial tones are separated by a fre-
quency difference close to the maximum of the curve from Fig. 2. An example
of the roughness curve for two sounds in which the intensity of the partial tortes
are inversely proportional to their frequencies is given in Fig. 3. The fundamental
frequency of the lower sound is constant and equals to 250 Hz whereas the funda-
mental frequency of the higher sound increases continuously from 250 Hz to 500
Hz. One can immediately remark the minima corresponding to simple fractions of
the fundamental frequencies.

The model of Helmholtz involves some assumptions which could not have
been verified with the technical means available in his times. Newer studies by von
Bekesy [4] have in principle confirmed the hypothesis of the local excitation of the
basilar membrane for a given frequency. However, the excited regions determined
by von Bekesy are larger than the resonances of the width phenomenologically
estimated by von Helmholtz. To explain this discrepancy some studies have been
done on the reaction of nerves to the strength of stimuli. It turned out that the
reaction is nonlinear so as the stronger stimuli are felt unproportionally stronger
with respect to the weak stimuli. Consequently, the final sensation is much more
localized than the regions of excitation of the basilar membrane. This finding can
be in favour of the Helmholtz theory, which with the newer modifications is known
as theory of the localization of the pitch sensation [5].
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In fact there exist some alternative theories on this subject. The present
studies are focussed on the motions of the liquid (perylymfe) filling the cochlea.
These are apparently nonlinear waves mostly influenced by the end orifice between
two parts of the cochlea — helicotrema [6].

3. Nonlinear interactions of partial tones
The analysis of the beats is not the unique way of obtaining a curve showing

a character represented in Fig. 3, i.e. marked by minima at the ratios of small
integers. Another idea is to take into account the interactions of the particu-
lar harmonics. This is known from the theory of the incommensurate crystals,
where the modulation wave interacts with the underlying crystal lattice through
socalled umklapp terms, which become particularly important for the ratios of the
wavelengths expressed by small integers [7]. The phases described by such simple
fractions are particularly stable. Whereas the incommensurate modulation varies
continuously with temperature, the commensurate, socalled lock-in phases, sub-
sist within some definite regions of temperature. By this does the nature satisfy the
ule of harmony requiring that a dissonance should be solved onto a consonance.
The lock-in phases thus correspond to cadences in the classical music.

In order to built a theory based on the principle of the umklapp terms one
has to determine the form of the interactions of the partial tones. The physical rea-
son for such an interaction lies in the known nonlinearity of the ear. The simplest
idea is to assume that the interaction is proportional to the product of the am-
plitudes of the partial tones independently of their frequencies. This quantity has
been called concordance and calculated by Chouvel [8]. Such a theory requires an
assumption that the - partial tones should be represented by Gaussian peaks around
their frequencies, otherwise, e.g. a slightly mistuned unison would be a strong dis-
sonance, whereas in reality it gives an impression of a single sound slightly waving
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because of the beats as it is predicted by the theory of Helmholtz. The meaning
of the widths of the peaks and their relation to other physical properties are not
known for the moment.

In any case, both linear phenomenon of beats and the nonlinear interactions
of the partial tones seem to contribute to the sensation of dissonance and con-
sonance. The simplest evidence for that is that a dissonance and consonance are
also distinguishable in the music played by flutes, which are known to produce
sounds composed practically of the fundamental tones only. The higher harmonics
essential as well in the beats theory as in the nonlinear interaction theory must,
therefore, be created in the ear.

4. Affinity of sounds

As we have seen various theories have been proposed to explain the conso-
nant character of sounds whose fundamental frequencies are in a ratio described
by small integers. The sounds separated by the most consonant intervals show an
affinity which is incontestable whatever might be the physical origin of the curve
from Fig. 3.

4.1. Octave — the absolute consonance

The most pronounced affinity corresponds to the ratio 2:1 of the fundamental
frequencies i.e. to the interval of octave. The spectra of two sounds separated by an
octave is shown in Fig. 4. The highest degree of affinity of the sounds separated
by an octave is easily understandable within the theory of beats. Indeed, the
smallest difference in frequencies in this case then is equal to f0 . Therefore the
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frequency of beats is equal to the fundamental frequency of the lower sound. Such
beats do not produce any waving of the intensity but only modify the amplitude
of the fundamental frequency. Also nonlinear interactions between the harmonics
produce some combination tones which are separated by multiples of the octave
with respect to the incident harmonics. This absence of beats is independent on
the sound timbre as well as on the register. In physical terms, one can say that
the consonance of octave is invariant against variations of the timbre and of the
register. The latter invariance can be called scaling symmetry.

There is an interesting analogy between the consequences of the invariance
in physics and in the music theory. In physics, any invariance is related to a con-
servation law. This is the case in the discussed invariance. The conserved quantity
is the extent of the musical scales in all very distant and isolated cultures: all
the musical scales are contained within one octave. In the European system the
sounds separated by multiple of octaves bear the same names: do, re, mi, fa etc.
The equivalence of the sounds separated by octaves can be noticed in the sim-
plest way by observing how amatour singers displace the tune whenever the sung
melody exceeds the scale of their voice: they simply displace the tune by an octave.
A specific interplay between the timbre and pitch has allowed for creation of so
called acoustic paradoxes. A sequence of sounds of a very special timbre may, e.g.,
give an impression of a continuous ascent although it consists of a finite number
of sounds [9].

4.2. Fifth — a perfect consonance

The second-deepest minimum in the curve from Fig. 3 occurs at the fre-
quency ratio 3:2 and corresponds to the musical interval of fifth. The history of
the European music is a series of consequences of this affinity of sounds. The first
polyphonic music — organum was based on the parallel flfths. The ending ac-
cords of the medieval and renaissance pieces were built of octaves and fifths. The
most important musical forms are based on this interval: indeed the subject of a
fugue — the dux is repeated in the interval of the fifth — the comes. Similarly
the second theme of the classical sonata is in the tonality of the dominant, so
that displaced by a fifth with respect to the flrst theme. Finally, the ubiquitous
perfect cadence in the classical music is a sequence of accords based on the sounds
separated by a fifth. The jump of a fifth has an analogy to the steps in surface
physics. From among all the conceivable steps the one by fifth has the smallest
energy and, therefore, the highest probability to occur.

4.3. Thirds and sixths — imperfect consonances

The thirds and sixths are nice consonances for some timbres but may become
rough for some other timbres, especially for organ mixtures having particularly
strong higher harmonics. Also a shift of these intervals towards deeper registers
may reduce their consonant character, because the beats among some harmonics
then fall into the critical band. Consequently, one cannot speak any more of an
invariance against changes of timbre and of the register for these intervals. As
a result, the use of these intervals varies for different cultures. In the European
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classical music the thirds and sixths soften the contrast between the dissonant and
consonant accords.

4.4. Dissonances

According to the ules of the counterpoint and harmony, the dissonant inter-
vals: the seconds, sevenths and the triton convey a tension which should be released
by a solution onto a consonance. In this respect the rules of harmony "predicted"
in a way the mentioned behaviour of the incommensurate phases which relax to
the lock-in structures. The use of the dissonances is characteristic of the music of
the twentieth century. The composers try to expose the audience to sounds which
show a lower affinity to attain an expression different from what has been already
exploited in the classical ules based on consonances. This does not contradict
the existence of the sounds affinity, but shows that their application may differ in
different styles of music.

5. Concluding remarks

We have given an example of an analogy between rules of harmony: a neces-
sary solution of dissonances onto consonances, and the lock-in phenomenon in the
incommensurate crystals. In a way music has "discovered" this effect much ear-
lier than the crystallographers. An important difference is that in the music the
expression is a sequence of accords, whereas in physics it has a verbal expression
assiSted by mathematical formulas.

In the same spirit, one can think of the quantum mechanics as of a rebirth
of the idea of the universal harmony. In fact the nature of microparticles such as
electrons or nuclei have more to do with the waves, so essential in music, than
with the corpuscular concepts characteristic of the classical mechanics.

The beauty of music and of physics has something in common. This is the
charm of a regularity which sometimes emerges from a rich variety of apparently
incoherent phenomena.
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