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SURFACE ROUGHNESS BY X-RAY AND NEUTRON
SCATTERING METHODS
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We discuss how the roughness and morphology of surfaces and interfaces
can be characterized by the nondestructive techniques of X-ray and neutron
scattering. We first discuss the mathematical description of rough surfaces
in terms of correlation functions and then discuss the various kinds of rough
surfaces which exist. These fall into the category of self-afflne (Gaussian)
surfaces, surfaces with capillary wave fluctuations, stepped surfaces, and
surfaces with islands or pits. We then discuss how the scattering from such
surfaces may be described and which types of information are available from
specular reflectivity, off-specular (diffuse) scattering, and grazing incidence
reflection experiments, including a comparison with results obtained by other
surface techniques. We then discuss multiple rough interfaces and the scat-
tering from thin films and multilayers. Finally, we shall discuss scattering of
neutrons by magnetically rough surfaces and multilayers.

PACS numbers: 61.10.Dp, 68.35.Bs, 78.20.Ci

1. Introduction

Over the last several years, there has been an increasing amount of interest in
methods for characterizing both theoretically and experimentally, the morphology
of surfaces and thin films. The performance of many thin-fllm devices, whether they
are semiconductors, superconduction or magnetic materials, depends sensitively on
the roughness and morphology of the interfaces.

Nevertheless, the manner in which this morphology depends on film growth
methods and the manner in which the roughness affects the magnetic or transport
properties of thin films is still poorly understood. X-rays and neutrons have proved
to be powerful, non-destuctive and in some cases, in situ probes for the study of
the roughness and morphology of interfaces. While not yielding direct imaging
information, as obtained from the complementary techniques of scanning probe
microscopes, e.g., scanning tunneling microscopy (STM), atomic force microscopy
(AFM), etc., scattering experiments are capable of yielding global statistical in-
formation about interfaces over an enormous range of length scales (angstroms to
microns). In addition, buried interfaces can be probed with ease. Consequently,
the use of such techniques is becoming increasingly popular, particularly with the
advent of high-brightness synchrotron sources of X-ray radiation.
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2. Roughness at a single interface

As is well known, no surface is perfect in general, but almost always possesses
some roughness. At the atomic level, crystal surfaces may have steps or clusters of
atoms forming islands or plateaus. Amorphous surfaces may have random clusters
of atoms, as may non-equilibrated sputtered films. Liquid surfaces will in general
have capillary wave fluctuations on them. The problem in general then is (a) how
to characterize the roughness and its morphology mathematically, (b) how to relate
it to the scattering of radiation and (c) how to extract quantitative information
about the surface roughness from scattering experiments.

Let us consider a surface centered on the plane z = 0, but with fluctuations
δz(x, y) as a function of the lateral coordinates (x, y). Such fluctuations may often
have a statistical distribution which is Gaussian, which we shall assume to be
the case here. (The case of non-Gaussian roughness will be discussed later.) An
important quantity is the mean-square height-deviation function g(R) (R - x, y),

defined by

representing a statistical average over position r on the surface (see Fig. 1). A
surface which is self-affine has the property that

where h (known as the roughness exponent) has a value between 0 and 1. The
morphology of the roughness depends sensitively on h. For small h, the surface
is sharp and jagged, while as h approaches 1, the surface becomes more gently
rounded. h = 1/2 corresponds to the case of random-walk fluctuations. In order to
be realistic at large values of R, we may introduce a cut-off length for the roughness
ξ which makes g(R) saturate as R →∞, i.e., we write [1]
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C(R) is referred to as the height-height correlation function. The justification of
Eqs. (2.3) and (2.4) may to some extent be found in the equations which govern the
growth of deposited films, snch as the Kardar- Parisi–Zhang (KPZ) theory .[2]. For
such surfaces, the height function H(r, t) as a function of r and time is governed
by an equation of the form

where γ, λ are constants and n(r, t) is a white-noise random function. An analysis
of the solutions of this equation, either numerically or using renormalization group
methods, reveals that the corresponding width function (given by Eq. (2.1) with
δz(r, t) —> H(r, t), g(R, t) obeys the following scaling form:

where G(x) is a scaling function, and h, z are scaling exponents. The scaling func-
tion G(x) must have the properties that

A function which satisfies these conditions is

where C1 is a constant. Substituting Eq. (2.8) into Eq. (2.6), it may be verified
that we recover the form of Eq. (2.3) if

where β, h, and z satsfy the relation

Thus, we conclude that a self-affine surface with a finite cut-off length for
the roughness is consistent with growth models if we assume that it corresponds
to the surface which results after finite growth time. Equations (2.9) and (2.10)
are specific predictions for such growth models, and we shall discuss experimental
tests for such models later. Regardless of the validity of growth models for surfaces,
Eq. (2.4) seems to work remarkably well in describing a wide variety of rough
surfaces encountered in nature, as deduced from both scattering experiments and
direct imaging probes used to profile the surface [3]. Its convenience is that it
characterizes the surface roughness mathematically in terms of three parameters,
the root-mean-square roughness (σ), the roughness exponent (h) and the roughness
cut-off length (c). Other forms have been proposed for the height-height correlation
function (see for instance Palasantzas and Krim in Ref. [4]), but most of them
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do not show any preferred advantages. One slightly modified form which does
have certain advantages was first proposed by Church [5] and later discussed by
Palasantzas [6] and DeBoer [7] is

where Γ(x) is the gamma function, and Κh(x) is the modified Bessel function of
non-integral order. This has the advantage that it does yield an analytic expression
for the Fourier transform of C(R) which is simply the noise spectral function
(|δz(q)| 2 ), i.e., it yields

where A, u are constants, and q is a twodimensional wave vector in the x-y
plane. Equations (2.12) and (2.13) also have the advantage that they show that
C(R) α In R as h → 0, making this a special case of the general form. (A loga-

rithmic height-height correlation function is characteristic of liquid surfaces having
capillary wave fluctuations [8], or a surface undergoing a roughening transition [9].)

3. Scattering by a single interface

Let us assume, for the moment, that the surface represents an interface be-
tween two media with uniform scattering length densities ρ1 and p2 . Let Δp =
p1—p2. (For X-ray scattering, p1 is simply the Compton scattering length (e 2 /mc2 )
times the electron number density, while for neutrons it is a weighted average of
the coherent nuclear scattering length times the nuclear number density, averaged
over all types of nuclei.) For scattering experiments (see Fig. 1), where the magni-
tude of the wave vector transfer q (defined as k1 — h0, where k0, k1 are the incident
and scattered wave vection of the radiation, making grazing angles α, β, respec-
tively, with the average surface) is small compared to the inverse of the interatomic
distances, we may neglect the crystallinity of each medium, a topic to which we
shall return. For experiments at small grazing angles, we may also neglect polar-
ization effects in the X-ray scattering and consider for simplicity the case of X-rays
polarized normal to the plane of scattering (ΤE polarization), so that we may use
a scalar wave equation. Then the Born approximation for scattering yields

where the integral is over the volume on one side of the surface. (We may use
periodic boundary conditions and a small absorption in the lower medium to ignore
all surfaces except the one shown in Fig. 1, such as the surface at z → ∞, etc.)

The integration over the z-coordinates may then be carried out in the above
integral, yielding
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Since δz(x, y) is a Gaussian random variable, carrying out a statistical average
yields an integrand which depends only on the relative separation (X, Y) of the
coordinates (z, y), (x', y'), and we obtain

where g(R) is defined by Eq. (2.1), and A is the surface area. Equation (3.3)
may also be rewritten by using the relation between g(R) and the height-height
correlation function as

Since C(R) —ł 0 as R -  οο the integral in Eq. (3.4) contains a delta function
which yields the specular reflectivity and we may write

The specular part may be converted into an expression for the specular refiectivity
by integrating over the detector solid angle and dividing by the incident beam
intensity (see Ref. [1] for details) to yield

where RF(qz ) is identical to the limiting case of the Fresnel reflectivity from a
smooth surface at large qz,

and Eq. (3.8) modifies it with a Debye-Waller-like factor due to the roughness
"smearing" of the average surface. Equation (3.7) yields the off-specular or diffuse
scattering in this approximation, which can only be written down as an analytical
function of q for special cases [1], but may be calculated quite generally if the
height-height correlation function is known. If sufficiently accurate data can be
taken over a wide enough range of qx , qy (e.g. with a linear or 2D position-sensitive
detector) it may be possible to Fourier transform S(q) and thus invert Eq. (3.7) to
yield g(R) directly. Such experiments have been done recently [10] and the g(R)
obtained is consistent with the self-affine form given in Eq. (2.3). In other cases,
forms such as given by Eqs. (2.3) or (2.4) have been used to fit scattering data,
and compared into the corresponding statistical quantities derived by digitizing
STM or AFM data taken on the same surfaces. These methods are now yielding
consistent results [3]. .
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4. Specular reflectivity

The case of specular reflectivity (where α = β and q is always exactly nor-
mal to the surface) has been widely discussed in the hiterature (see Ref. [11] and
references therein, or Ref. [12]), and we now discuss it in slightly greater generality
here. Let us for the moment ignore lateral fluctuations of the interface and replace
the interface with an arbitrary graded density profile p(z) (averaged over the x-y
plane). Then the generalization of Eq. (3.8) is [13]

where p0 is the asymptotic value of p(z) well inside the medium. This basically
is the Born approximation result and is not accurate in the vicinity of and below
the critical angle for that reflection. In such cases, there are well-known methods,
used in optics (cf. Refs. [14], [15]) to solve for R(q) as accurately as we please
by dividing p(z) into a set of histogram slices of constant mi (i = 1, ... N) and
obtaining an iterative solution by matching boundary conditions at each interface.
The method is basically numerical but quite accurate for large enough N. Using
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this method or Eq. (4.1), one may attempt to obtain p(z) from the measured
reflectivity function. In general, a unique solution cannot be obtained because of
the lack of phase information in R(q) as is evident from Eq. (4.1) but reasonable
density proflles can often be obtained by fitting and other methods. Gaussian
roughness corresponds to dp/dz being a Gaussian function of z and yields exactly
Eq. (3.8) again. Another special case is a uniform thin film on a substrate of
different density. Neglecting roughness, this yields two delta functions in dp/dz
separated in z by Δ, the film thickness, and from Eq. (4.1) this leads to modulations
in R(q) with successive maxima separated by Δq z = 2π/Δ. This may be thought
of as interference fringes from scattering by the top and bottom surfaces of the
film and are known as Kiessig fringes.

An example of the use of such techniques is the use of specular reflectivity
from a liquid surface to study surface crystallization. Figure 2 shows the reflectivity
from the surface of three liquid alkanes (with carbon numbers C18, C20 and C 24 ,

respectively) at Tm + 4°C and Tm + 3°C, where Tm is the bulk crystallization
temperature. At the higher temperature, the reflectivity corresponds to that of a
bulk liquid, with a root-mean-square roughness σ = 4.1-4.7 Å, arising from surface
capillary waves (see next section). However, the development of modulations at
the lower temperature clearly shows the existence of a denser molecular layer at
the liquid surface. By fitting the data, the thickness of the layer (see inset to
Fig. 2) was found to be very close to the length of the alkene molecule, and the
electron density of the layer to correspond closely to that of the bulk "rotator"
phase of the alkane [16]. These results, combined with further investigations of
the in-plane stucture using grazing incidence diffraction, and with surface tension
measurements, revealed that liquid alkanes actually first crystallize in a surface
layer a few degrees above the bulk freezing transition (for carbon numbers greater
than C12). The same behavior has been found in long chain alcohols [17] and liquid
alkane mixtures [18]. Similar behavior was seen earlier in liquid crystals [19].

5. Diffuse scattering from a rough surface

The Born approximation results are only valid if the scattering is weak,
which will be the case when α or β (Fig. 1) are small or close to the critical
angle for total reflection. A slightly better approximation in this case is to use
the socalled distorted wave Born approximation (DWBA). In this case, instead
of using plane waves to calculate the matrix elements of the scattering as in the
Born approximation, one uses the actual wave functions which closely approximate
the actual system, i.e. one may use the true wave functions for reflection and
transmission at the corresponding smooth surface. In this case, the main effect on
Sd iff (q) as given by Eq. (3.7) is to modify it to

where Τ(α) is the Fresnel transmission coefficient of the average interface for
grazing angle of incidence α, and q,z is the z-component of the wave vector transfer
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in the medium under the surface (which may be complex or even purely imaginary
for evanescent waves in the case of total external reflection). The main effect of
this is to produce side-peaks in the transverse diffuse scans (rocking curves) when
α or β is equal to the critical angle, since at that point T(α) reaches a maximum
value of 2, the incident, and specularly reflected waves being in phase so that
the field at the surface is at a maximum. Such side-peaks are known as "Yoneda
wings" [20] (see Fig. 3). For large α, β and hence large 'q , Eq. (3.7) is a good
approximation, and we may neglect the difference between qz and qz. For large qz
but with qx = qy ≈ 0, it may be shown that Sdiff has the asymptotic form [1]

so that the exponent h may be found from such asymptotic power laws. For many
experiments, the instrumental resolution in the direction of q out of the scattering
plane is kept rather loose, i.e. q y is effectively integrated over (if the plane of
scattering is defined as the x-z plane). Then Eq. (3.7) shows that what is measured
is

i.e. a one-dimensional, rather than a twodimensional Fourier transform. For iso-
tropic rough surfaces, this yields the same information, but may be misleading
if the surface is anisotropic (e.g. miscut single crystal surfaces with steps). The
asymptotic form in this case which corresponds to Eq. (5.2) is
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The specular reflectivity is also modified in the DWBA from the simple expression
Eq. (3.8), and is replaced by the form

which was first derived by Nevot and Croce [21]. However, DeBoer has recently
considered going to second order in the DWBA [7] and finds that if the roughness
cut-off length is small then Eq. (3.8) (known as the "Rayleigh expression" for the
reflectivity) is actually a better approximation than the Nevot-Croce expression.

In the case of liquid surfaces, surface roughness is due to capillary wave
fluctuations. There are some problems in connection with a tuly first-principle
calculation of such fluctuations (for a recent discussion, see Ref. [22]), but one
may write down at least a phenomenological expression for the surface free energy
of the liquid and derive from it the spectral function for surface height fluctuations
in the form

where γ is the surface (or interface) tension, and κ is the inverse of the capillary
length defined by κ-1 = (Δp0 )g/γ, Δp0 being the mass-density difference between
the fluids on either side of the interface. κΡ is typically of the order of 10 cm -1 .
Fourier transformation of Eq. (5.6) leads to a form for the height-height correlation
function

and K0(x) is the modified Bessel function. At length scales « κ- 1 (which are
in practice those relevant for scattering experiments) the Bessel function may be
replaced by a logarithm and to prevent short (molecular) length scale problems
we may also introduce a lower length scale cut-off [23]. Thus, we finally write

where r0 is defined to give the correct lateral surface roughness, given by the
integral of Eq. (5.6).

Substituting this in Eq. (5.1) we may calculate the scattering in the DWBA,
after folding with the resolution function. As shown by Sanyal et al. [24], the log-
arithmic form yields asymptotic power laws for S(q) as a function of transverse
q at fixed qz, as in the case of a 2D crystal with algebraic correlations. These
are smeared out at small transverse q due to instrumental resolution effects [24].
The exponent of the power law n is equal to (1/2)Bq 2z which can be calculated
knowing the surface tension. Good agreement was obtained with the observed scat-
tering from ethanol at room temperature. Braslau et al. [25] had earlier studied the
specular and diffuse scattering from water and shown that the mean square rough-
ness σ2 obtained from specular reflectivity experiments is decreased by an amount(B1 In m"* ), where qmax is the short-wavelength cut-off ( r^ 1) and qmin is the2 	 qman
instrumental resolution cut-off, which pre-empties the capillary length cut-off  κΡ,
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since it is in general much larger. Thus we have in principle to correct for the
instrumental resolution when we measure the roughness of a liquid surface us-
ing specular X-ray reflectivity. The dependence of the cut-off qmax on molecular
dimension has been checked by Ocko et al. [26].

6. Scattering by multiple interfaces

When one has a thin film on a substrate or a multilayer, the roughness at
the various interfaces may be correlated. This is indicated in Fig. 4, which shows
clearly in a sectioned TEM micrograph of a multilayer how interface fluctuations
propagate from the substrate to each deposited interface. The roughness is said to

be "conformal" in such cases. We may discuss the scattering from such interfaces
in terms of the height-height correlation function between different interfaces, i.e.
we generalize Eq. (2.4) to define

zi(r), z (r + R) are now height fluctuations of the i-th and j-th interfaces. The
generalization of Eq. (3.7) for the diffuse scattering in the Born approximation
is [27-31]

and σi is the root-mean-square roughness of the i-th interface, Δpi is the scat-
tering length density contrast across it, zi is its average height, and δ is the
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root-mean-square deposition error in the layer spacing, which is cumulative from
layer to layer. If there is no correlation between the interfaces, Cij (R) = Ο for
i ψ j and Eq. (6.2) reduces to the sum of the diffuse scattering from the individual
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interfaces. However, in general Cij (R) ψ 0, and the phase factors exp[iq z (zi - z)]
in Eq. (6.2) will cause the diffuse scattering to peak in ridges of constant qz at
the q,z values corresponding to the maxima in the specular reflectivity, i.e. at the
Kiessig fringe maxima in the case of a thin film on a substrate, or at the positions
of the multilayer Bragg peaks in the case of multilayers [27-31]. This is illustrated
in Figs. 5a and 5b for a single thin film of water wetting a glass substrate [32],
and for a multilayer film, respectively [29]. The fringes and peaks due to conformal
roughness between the interfaces is quite evident. In the case of the multilayer,
an excellent fit was obtained to the data using the expression in Eq. (6.2) and
assuming ,perfect conformality between all the interfaces, i.e. C22 (R) independent
of i, j [29]. Most thin films, unless extremely rough, show a degree of conformal-
ity with the substrate over often surprisingly large thicknesses. For multilayers,
Stearns et al. [33] have developed a theoretical model for the propagation of con-
formal height fluctuations through a multilayer. They approach it from the noise
spectral function, or the Fourier transform of C(R), since the conformality is ob-
viously a function of the lateral Fourier component of the fluctuations, i.e. large
q (rapid) fluctuations will be more likely to be uncorrelated than small q (long
wavelength) fluctuations. For the case of liquid films wetting a rough substrate,
Andelman et al. [34] have calculated theoretically the amplitude of the fluctuations
of the upper surface of the liquid film in terms of those of the substrate and shown
that the coefficient of proportionality depends on the lateral wave vector q of the
fluctuation, the liquid/vapor surface tension, and the interaction between the liq-
uid and the substrate. Recent X-ray scattering experiments on thin liquid [35]
and polymer [36] films have been used to check the predictions of these types of
theories, with on the whole satisfactory results.

For multiple interfaces, going beyond the Born approximation becomes very
complicated [30, 37]. We cannot go into the details here, but simply point out
that, in the vicinity of both the critical angles for total reflection and the angles
for multilayer Bragg reflections, the use of the DWBA, or the "dynamical theory"
(where one uses the tue eigenfunctions) [38] yields an additional sharp stucture in
the diffuse scattering due to multiple wave interfaces. These are the generalizations
of the "Yoneda wings" seen for single interfaces and discussed in Sec. 3.

7. Scattering by non-Gaussian surface fluctuations
Many kinds of surfaces have specific surface features that cannot be discussed

within the random Gaussian self-affine model of roughness discussed in Sec. 2.
Examples are surfaces with islands of fixed or variable heights above the reference
surface, surfaces with pits (as in the case of corrosion), surfaces with steps, etc.
In order to discuss the scattering from such surfaces in the Born approximation,
we must go back to the basic formula for S(q) given in Eq. (3.2). Let us for the
moment imagine that the height function z(x, y) for the interface has a bimodal
distribution, being 0 with probability P1(x, y) and Δ with probability Ρ2 (x, y) =
1 - P1 (x, y). (This corresponds to islands of fixed height Δ across the interface.)
Then Eq. (3.2) may be written as
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Writing φ for the fractional coverage of islands, we may express the above in terms
of the twodimensional analogue γ0(x, y) of the Debye correlation function related
to the probability of crossing over from no island to an island within a relative
separation of (x, y), and obtain

Note that the longitudinal diffuse scattering (qx , qy 0) has a modulation along
qz with period (2π/Δ) which is exactly out of phase with a similar modulation
in the specular reflectivity. This is in contrast to the case of conformal roughness,
where the Kiessig fringes in the specular and the diffuse are in phase. The above
theory can be easily generalized to the case of a film with islands deposited on
a substrate, and to include roughness fluctuations as well. The expression for the
specular reflectivity may be written as

where t is the total film thickness, p1 is the film electron density, p2 — that of the
substrate and σ1, σ2 are the roughness values at the film/air and film/substrate
interfaces, respectively. This reflectivity expression yields both the rapid Kiessig
fringes, as well as modulations due to the islands on the surface. Figure 6 shows the
specular reflectivity and longitudinal diffuse scattering from a polymer film deco-
rated with such islands, where both the Kiessig fringes (which appear in phase in
the specular and the diffuse scattering due to conformal roughness of the film and
substrate) and the "island modulations" (which are out of phase in the specular
and in the diffuse) are observed [39]. Figure 7 shows transverse diffuse scans (rock-
ing curves) obtained for another system studied, namely a copper film in contact
with an electrolyte in an electrochemical cell to which a negative (oxidizing) volt-
age is applied, as a function of the time for the applied voltage [40]. It may be
seen that side peakś grow in the diffuse scattering on either side of the specular
reflection. This is a consequence of the pit correlations, which are reflected in a
peak in the Fourier transform of the γ 0 (x, y) function.

Steps on a surface can result from a miscut of a single crystal surface rel-
ative to high symmetry crystallographic planes, of facets, and such steps lead to
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roughness which is very anisotropic. The steps can be quasi-periodic and of uniform
height, resulting in satellite peaks about the specular position [41], or they can me-
ander in a disordered way and give rise to a characteristic diffuse scattering which
has been discussed elsewhere [31]. At the socalled "roughening transition" [9], the
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height-height correlation function between the steps becomes logarithmic, as for
a liquid surface with capillary wave fluctuations, and results in power-law tails in
the transverse diffuse scans.
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