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Mechanics of metal surface layers deals with a description of the follow-
ing objects, quantities and processes: structures and mechanical properties
of metal surface layers after a heat, chemical, electro-chemical or physical
treatment; evolution of these structures and properties during mechanical
treatments; mechanical behaviour of the layers during exploitation processes.
This branch of mechanics is based on the results of physical investigations,
but it uses a mechanical approach. In the paper, descriptions of metal sur-
face layers within the classical anisotropic plasticity, large strain plasticity,
and finałly, the crystal and polycrystal plasticity are recalled. Problems con-
nected with a formulation of laws governing a surface layer behaviour are
comprehensively discussed.

PACS numbers: 68.10.Cr, 68.35.Gy

1. Introduction

Mechanics of metal surface layers fringes upon the physics of solids, on one
hand, and upon the solid mechanics, on the other. The first deals with a crystal
surface and interface properties of the depth scale of R. 10 —6 mm, the second de-
scribes a mechanical behaviour of metal surface layers of thickness 0.05-5.0 mm.
Technological surface layers are composed of various crystal grains, which are
stressed, disordered and impure. Their exact mechanical description should take
into account the above diversity, but it should remain within the framework of
continuum mechanics. Such an approach permits to use many very efficient meth-
ods of numerical analysis for a simulation of complex material behaviour. This
analysis is based on a system of equations, which determine a current state of a
deformed material body. Among these equations, the constitutive laws are particu-
larly important. They are different for different materials (elastic, plastic, viscous,
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etc.) and they describe behaviour of a small material element. In the case of metals
this behaviour is mostly elastic or elastoplastic. The elastic behaviour is deter-
mined by the generalised Hook law. The plastic state and its evolution are defined
by a piece-linear or non-linear algebraic equation, known as the plasticity condi-
tion, and by the flow rule, which links plastic strain increments with corresponding
stresses [1]. In general case, the flow ule contains the fourth order tensor of plastic
anisotropy. For metals, the elastic strains are usually small, but the plastic ones
may be very large. The plasticity theory at large plastic strains is well elaborated
[2], but it is valid for the plastically isotropic materials only. For a correct formula-
tion of anisotropic plasticity at large strain, a microstructure of deformed material
must be taken into account [3]. That is why a great progress of crystal and poly-
crystal plasticity is observed recently [4]. Polycrystalline stucture of metal surface
layers and their strongly anisotropic properties make it necessary to use the most
advanced mechanical models to describe their formation and real behaviour. All
these models are based on the notions of the yield stress and hardening moduli.
The initial and current yield stress, as well as the initial and current hardening
moduli are the basic parameters defining the plastic behaviour of metals. In the
classical plasticity, they describe materials without microstucture and they are
measured with help of macroscopic specimens. These parameters may be related to
microhardness of the material, on the microscopic level, or to dislocation densities,
on the sub-microscopic level. An identification of the yield stresses and hardening
moduli for materials with microstucture is a basic problem of the mechanics of
metal surface layer.

2. Structure and mechanical properties of metal surface layers

According to the standard definition, the metal surface layer is a part of
a metal element lying under its external surface, which has mechanical, physical
and sometimes chemical properties different from those of the core of the element.
From mechanical point of view, a surface layer is characterised by a strong plastic
anisotropy and a concentration of residual stresses. They appear when the metal
element is subjected to one of the following surface technologies [5]:
— heat treatment (e.g. quenching, tempering, annealing),
— chemical treatment (e.g. carbonizing, nitriding),

electrochemical treatment (e.g. electro-plating),
physical treatment (e.g. ions implantation).

The plastic anisotropy caused by the above technologies is called the original
plastic anisotropy [6]. To temper the stress concentration and to diminish differ-
ences between mechanical properties of the surface layer and those of the core, me-
chanical treatments (rolling and sliding burnishing, shot-peening) are commonly
applied [7]. A squeeze of the material during a mechanical treatment leads to the
strain induced plastic anisotropy of the layer. Note that the strain induced plastic
anisotropy appears also in exploitation processes.

From the mechanical point of view, the most important characteristics de-
termining a state of surface layer are: a structure of the layer, a hardness field and
a residual stress field. Examples of these characteristics for a nitrized layer are
shown in Fig. 1.
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A simplified model of the layer structure is shown in Fig. 2. One can dis-
tinguish in the model: a near-surface zone, a preferred surface zone and squeezed
zone [8]. Hardening of metal surface layers has strong influence on the plastic lo-
calization, and then on localization and initiation of fatigue crack growth in metal
elements. Due to high fracture toughness of the surface layers, sources of fatigue
cracks are localized under these layers. Many microscopic observations indicate
two reasons for appearance and evolution of the strain induced plastic anisotropy
[9]:
— an elongation of metallic grains leading to the morphological texture;
— a reorientation of crystalline lattices leading to the crystallographical texture.
The texture effects have a strong influence on the macroscopic properties of metal
surface layers. For this reason, mechanical models of layer behaviour should take
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into account the macroscopic description of metal plastic deformations as well as
the microscopic one.

3. Elasto-plastic models of metal surface layers

Thickness of metal surface layer takes values from 0.05 to 5.0 mm. Typi-
cal grain diameter is of order of 0.1 mm. Cross-sections of thick surface layers
slit so many grains that mechanical properties of the layers may be considered
as smoothly changing fields. A principal problem is a way of their determina-
tion. In the classical solid mechanics, a material behaviour is tested in uniaxial
tension-compression tests and described by stress-strain relations σ—ε. In the case
of surface layers, it is better to use intensities of the above tensors for description
of their behaviour

Denote by σif , ε  eij , εPij andεij ,the stress, elastic strain, plastic strain and the total
strain tensor, and by dέei j , dεPij and dεij , the corresponding strain increments.
Within the small strain considerations one can assume

It may be shown that the relations σij-έeij ^ and σi^—εp may be uniquely repre-
sented by relations: -r and ^-^ respectively [1]. Now, one can introduce a
relation for a small material element of the surface layer, on the analogy of the
σ—ε dependence for standard metal specimens [10] (Fig. 3). This relation depends
on the local material parameters: a Young modulus E, an initial yield stress G-0 ,
a current yield stress σy and a current hardening parameter Η. In the standard
uniaxial tension test, the above quantities are assumed to be constant on the
cross-section of metal specimen. Here, these quantities change through the depth
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of the surface layer and their identification makes many problems. Assuming elas-
tic isotropy of the layer, the parameter Ε is commonly taken the same as that in
the core. The identification of σ0, σy and Η parameters is more complex. Most
often these parameters are determined indirectly, with help of hardness tests [11].

When the stress state is a three-dimensional one, the initial and current
yield stresses form, in the principal stress space {σ ι , σ2 , σ3 }, the initial and cur-
rent yield surfaces. For metals these surfaces are cylindrical, and their axes are
equally inclined to the principal stress axes. During an anisotropic plastic yield of
the material element, cross-section of yield surfaces is deformed, and their axis is
shifted from the initial position.

Two facts are ascertained and experimentally confirmed:
— yield stress is independent on the hydrostatic pressure σ = ś iii i.e. it depends
on the deviator sib only;
— plastically deformed material is incompressible one, i.e. ε = Ο.
Taking the above into account, the general form of the quadratic yield surface is
the following:

In the expression (3), Αijkl = Αijkl(εPρq) is the fourth 'order tensor of plastic
anisotropy moduli, (t j = αij(εPpq) is the kinematical hardening tensor, and σy =

σy(ε-Ρ)is the current yield stress. An evolution of αijis governed by an additional
hardening rule. The tensor αij describes a shift of the yield surface axis from the
initial position and it is responsible for a difference between the yield stress during
a tension and that during compression (i.e. the Baushinger effect).

The most popular approach to description of plastic anisotropy of metals is
the orthotropic theory of plasticity proposed by Hill [1]. Within this approach, the
yield condition takes the form

In this yield condition, the Baushinger effect is neglected. The fixed parameters:
F, G, H, L, Μ and N describe an initial anisotropy of the plastic yield. They
are determined in the stress-strain tests. A proposition of model which describe
changes of plastic anisotropy during a deformation process has been given by
Baltov and Sawczuk.

To complete a model of plastic behaviour of the material, it is necessary to
postulate the flow rule which expresses a plastic strain rate έij through the stress
tensor σ j . For metals, the plastic flow ule is associated with the assumed yield
condition

It means that the function F(σij , σy ) is a plastic potential for the field iij (σib, σy ).

The scalar function λ = λ(σij , &ij) is determined from the consistency condition
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The above condition results from an assumption that the plastic strain rate does
not depend on load rates and consequently on a time scale. This assumption makes
the fundamental difference between the plastic and viscous material behaviour.
Whereas the viscous stress field strongly depends on a deformation rate, the plastic
one depends on a load magnitude only.

The relations (4)-(6) enable to construct the rigid-perfectly plastic model of
the material neglecting elastic strains and hardening. One can predict properties of
squeezed surface layer after the roller burnishing under a high load (Fig. 4). Now,

let us consider the elastoplastic model. The elastic strain rate of the material may
be determined from the generalized Hook law expressed in the incremental form

where Lijkl are components of the fourth order tensor of elastic moduli.
From (2), (5) and (7), one can obtain the following Prandtl—Reuss equations:

where Cijkl = Cijkl(Spq) are components of the fourth order tensor of plastic
anisotropy moduli, K = 0 for F(σij, σy ) < 0 and K = 1 when F(σij , σy ) = 0.
The above equations may be directly used in numerical procedures for analysis of
metal surface layers. As an example [13], results of residual stress calculations for
an elastíc-plastic surface layer after rolling a metal element are shown in Fig. 5.
On the plot α denotes the roller—element contact width, and p 0 is the maximum
contact pressure.

Let us examine the case of large plastic strains, which appear during loading
of metal specimen. As it was previously observed, the plastic strain may be defined
as that remaining after elastic unloading of the specimen. However, such a defini-
tion is correct for uniform strains only. In the case of nonuniform strains, residual
distortions remain in the specimen after unloading. To remove them, one can cut
the specimen onto small unstressed pieces. The final strain of each of them may be
regarded as the plastic strain. The above procedure has been proposed by Lee [2]
and it is known as the hypothesis of unstressed configuration. According to this
hypothesis, for large plastic strains instead of the additive rule (2), the following
multiplicative rule is introduced:
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where Feik , Fpkj and Fij are the elastic, plastic and the total deformation gradient,
respectively.

Note that the final orientations of unstressed pieces of the specimen are not
determined. Then, the hypothesis of unstressed configuration is valid providing
that the stress—strain relation for each of the pieces does not depend on its orien-
tation. It is the case of isotropic material. For that case, McMeeking and Rice [14]
have proposed a generalization of the Prandtl—Reuss equations (8) on the case of
large plastic strains. Their form is the same as for small strain theory, but instead
of the Cauchy stress rate σij, the Jaumann derivative of the Kirchhoff stress

is introduced, and on the place of εij the strain rate tensor dij is set down. The
quantities τij, dij and ωiÁ are defined as follows:

wher p and p0 are the current and reference density, respectively.

4. Microstructural models of metal surface layers

Microstuctural approach allows to describe an appearance and development
of plastic anisotropy of metal element caused by large plastic deformations. On
the microscopic level, the metal element is considered as an aggregate of grains
which have a uniform crystallographic stucture. The first effect, which leads to
the plastic anisotropy, is a considerable grain elongation during a plastic yield.
The elongated grains create something like material fibres of higher ductility in
the metal element. This effect is called a morphological texture of metals. The
second reason, which causes the plastic anisotropy, is the crystalline structure of
metal grains. Because the plastic yield of a single grain appears as a result of
glides on certain slip systems of grain crystallographic lattice, a grain behaviour
is plastically anisotropic. For this reason, during a plastic yield, the slip planes
and slip directions rotate together with the crystallographic lattice. In crystal
aggregates, one can observe an appearance of privileged lattice orientations called a
crystallographic texture. For pure metals, the crystallographic texture has decisive
influence on an appearance and development of their plastic anisotropy.

The first complete formulation of single crystal plasticity has been proposed
by Hill and Rice [15]. The model is based on the Schmid law: a crystal yields when
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a shear stress on a certain slip system reaches some critical value. The Schmid
law plays a role of three-parameter piece-linear yield condition (Fig. 6). The cor-
responding flow rule is associated with this condition.

A piecewise-linearity of the Schmid law leads to ambiguity in the choice of
active slip systems at the plastic corners of yield surfaces. To avoid this problem,
a viscous approximation of the plastic crystal behaviour is used in practice [16].
Recently, a real elastic-plastic model based on a regularization of the Schmid law
has been proposed [17, 18]. Equations of the model have the following form:

where h 0 is a certain hardening parameter, and fit, 9ij are functions of the stress
elastic moduli and lattice geometry of the crystal.

Models of single crystal behaviour enable to describe a behaviour of elas-
tic-plastic polycrystals. It is possible owing to the Taylor assumption [19], which
states that all local strain fields, in grains of a uniformly deformed polycrystalline
specimen, are the same as a global macroscopic strain field. The above assumption
allows to predict a texture evolution in a rolled metal surface layer (Fig. 7). The re-
sults presented in Fig. 7 have been obtained using the rigid-perfectly plastic model
of the material. Equations (12) enable to formulate a finite element method (FEM)
numerical code for prediction of texture evolution in deformed elastic-plastic metal
elements [21].
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5. Conclusions

Mechanics of metal surface layers deals with problems which form three basic
groups:
1 — experimental investigations, which are realized on

• the macroscopic level (measurements of material hardness and residual stress-
es in surface layers after non-mechanical treatments, and their changes after
mechanical treatments);

• the microscopic level (description of geometrical and physical structure of
the layers, mechanical tests of stucture elements, description of structure
changes after mechanical treatments);

• the submicroscopic level (measurements of dislocation densities on grain
boundaries, investigation of formation and development of dislocation nets
in plastically deformed surface layers);

2 — theoretical modelling, which includes
• a formulation and analysis of constitutive equations both on macro and

microscopic level;
• a formulation of initial-boundary problems describing a mechanical behaviour

of surface layers;
• a formulation, development and application of numerical procedures for a

simulation of surface layer behaviour during exploitation processes and me-
chanical treatments;

3 — identification procedures, which link together two above groups and look for
• a relation between a hardness and yield stress of surface layer;
• a relation between a hardness change and hardening of the layers;
• a relation between dislocation densities and latent hardening on slip systems

of grains composing metal surface layers.
The last group of problems, which includes identification procedures, is the basic
one for an engineering practice and still it is the least of all explored.

Acknowledgment

Grant of the Committee for Scientific Research PB 3P402 016 07 and grant of
Warsaw University of Technology No. 503/105/904/3 are gratefully acknowledged.

References

[1]R. Hill, The Mathematical Theory of Plasticity, Clarendon Press, Oxford 1950.

[2]E.H. Lee, J. Appl. Mech. 36, 1 (1969).
[3]Y.F. Dafalias, Z. Angew. Math. Mech. 59, 437 (1979).

[4]J.R. Asaro, J. App'. Mech. 50, 921 (1983).
[5]T. Burakowski, T. Wierzchoń, Surface Engineering of Metals, WNT, Warszawa 1995

(in Polish).
[6]W. Gambin, A. Nakonieczny, K. Skalski, J. Theor. Appl. Mech. 31, 827 (1992).



154 	 W. Gambin' K. Skalski

[7] W. Przybylski, Burnishing Technology, WNT, Warszawa 1987 (in Polish).
[8] Polish Standards, Surface layer. Terminology, PN 87/M-04 250.
[9] P. Coulomb, Les textures dons le métaux de réseau cubique, Les Dunod, Paris 1972.

[10]K. Skalski, Contact Problems for Elaslic-Plastic Material, Mechanika 94, Wyd. Pol.
Warszawskiej, Warszawa 1986 (in Polish).

[11]G.D. Del, Technological Mechanics, Mash., Moskva 1978 (in Russian).
[12]I.F. Collins, Int. J. Mech. Sci. 14, 1 (1972).
[13]R.J. Pomeroy, K.L. Johnson, Inst. Mech. Engineers' J. Strain Analysis 4, 208 (1969).
[14]M.R. McMeeking, J.R. Rice, Int. J. Solids Struct. 11, 601 (1975).
[15]R. Hill, J.R. Rice, J. Mech. Phys. Solids 20, 401 (1972).
[16]R.J. Asaro, A. Needleman, Acta Metall. 33, 923 (1985).
[17]W. Gambin, Z. Angew. Math. Mech. 71, T 265 (1991).
[18] W. Gambin, Int. J. Solids Strúct. 29, 2013 (1992).
[19]G.I. Taylor, J. Inst. Metals 62, 307 (1938).
[20]W. Gambin, F. Barlat, in: 4th Int. Symp. on Plasticity and Its Current Applications

- PLΑSTICIΤΥ'93, Baltimore 1993, unpublished.
[21] W. Gambin, in: Proc. IUΤΑM€ ISIMSymp. on Anisotropy, Inhomogeneity and Non-

linearity in Solid Mechanics, Nottingham 1994, Eds. D.F. Parker, A.H. England,
Kluver—Academic Publ., Dordrecht 1995.


