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UNIVERSAL BEHAVIOUR
OF MAGNETOCONDUCTANCE DUE TO WEAK

LOCALIZATION IN TWO-DIMENSIONAL SYSTEMS
— EXAMPLE OF GalnAs QUANTUM WELLS
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Weak localization corrections to conductivity of a two-dimensional elec-
troii gas are studied by measurements of the magnetic field dependence of the
conductivity in GalnAs quantum wells. We observe that, when presented as
a function of the normalized magnetic field (x = B/Btr , where B is the mag-
netic field, B« = h/4eτD, D is the dichusion constant and τ is momentum
relaxation time), dicherent samples show very similar high field behaviour. A
theoretical description is developed that allows one to describe in a consis-
tent way high and low field behaviour. The theory predicts universal (B -1 /2 )

behaviour of the conductivity correction for all 2D systems in the high fiełd
limit (r > 1). Low field behaviour depends strongly on spin and phase re-
laxation mechanisms. Comparison of the theory with experiment confirms
the universal behaviour in the high fleld limit and allows one to estimate the
spin and phase relaxatioii times for dicherent GalnAs quantum wells.

PACS numbers: 73.20.Dx, 73.61.Ey

1. Theoretical background

Weak-field magnetoconductance is due to quantum corrections to the con-
ductivity, Δσ, arising from interference of electron waves scattered along closed
paths in opposite directions. This interference is destroyed by the magnetic field
because of the phase shift between the corresponding amplitudes which is equal to
21-/φ0, where φ ='BS is the magnetic flux through the area S of a closed path,
φ 0 = πħ/e is the elementary flux quantum. This idea lies in the basis of the theory
of the weak localization magnetoconductance [1, 2].
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To describe the magnetic fleld dependence of the quantum correction to
conductivity three characteristic field values are usually introduced: Βφ, Βso and
Btr, where

Here D = 12/2τ is the diffusion coefficient, 1 = υFτ is the mean free path, υF
is the Fermi velocity, τ, 1s , and Τ φare the elastic scattering, the spin relaxation,
and the phase-breaking times, respectively.

It is convenient to use the expression for the quantum correction to the
conductivity derived in Ref. [1], which may be written as

where s = (2/x)1/2, Ln is the n-th Laguerre polynomial.
It is easy to take account for the phase breaking and spin-relaxation processes

and thus to obtain a complete formula describing the quantum correction to con-
ductivity not only in the high field limit, (Β » Βφ, Bso ), as Eqs. (2), (3), but also
in the low field limít (Β < Βφ, Βso ). If, for a moment, we consider phase-breaking
processes only, an additional factor exp(-|r — r'|/lφ) should be introduced into
the relation which is used to calculate W(r) — the probability to find an electron
in the area der around the point r (see Ref. [1]), where l φ = υFτψ = Ιτφ/τ. This
leads to the following modification of the expression for Pn in Eq. (3):

where βφ = τ/τφ = Βφ /Βt . We denote by F(x,'βφ) the function defined as F(x)
in Eq. (2), but with Pn modified according to Eq. (4). Thus, if spin relaxation is
ignored

We now introduce spin relaxation. This may be done by a simple general-
ization of the Hikamis-Larkin—Nagaoka (HLN) results [3]. As it is well known (see
Refs. [2, 3]) the quantum correction may be split into a positive singlet part, which
is not influenced by spin relaxation (in the absence of magnetic impurities), and
the negative triplet part which depends on the spin relaxation rate. In the 2D case,
when the fluctuating magnetic field responsible for spin relaxation lies in the 2D
plane, the two in-plane spin components relax with the same time constant, τ s ,
while the normal to the plane spin component is destroyed two time faster. These
considerations lead to the following formula which accounts for the phase-breaking
and spin relaxation processes and is applicable for arbitrary magnetic fields (lim-
ited only by the condition ωτ « 1, where ω is the cyclotron frequency):
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where

The quantities Bφ , Βso, and Btr are defined by Eq. (1), where τs should be under-
stood as the relaxation time for the in-plane spin components§. For x = B/Btr <ς 1
Eq. (6) reduces to the HLN formula [3]

where Ψ is the di-gamma function. For large x the universal curve given by
Eqs. (2), (3) is recovered.

Some remarks are in order, concerning the notion of universality for the high
field behaviour of the quantum correction Δσ. It is universal in the sense that for
B . Bφ, Βso and for a given elastic scattering mechanism Δσ depends on magnetic
field only through the parameter x = B/Bt r. For the case of isotropic scattering
(short-range impurity potential) this dependence was calculated in Ref. [1], and
this is the case for which the formulas given above were derived.

2. Experimental results

Four AlGaAs/InGaAs/GaAs pseudomorphic quantum wells were used for
the experiment. They were grown by the molecular beam epitaxy technique. The
twodimensional electron gas was formed in the 13 nm thick InGaAs layer. All
samples were δ-doped with Si (doping density N = 2.5 x 1012 cm -2 ). They had
AlGaAs spacer of thickness from 2 nm to 6 nm. After slow cooling (to 4.2 K) in the
dark the sample with the biggest spacer had the lowest carriers concentration in
InGaAs layer 1.05x 10 12 cm-2 , the samples with 4 nm spacer occasion1.35x 1012cm-2
and the sample with 6 nm spacer k. 1.6 x 10 12 cm -2 . Hlumination by infra-red
emitting diode allowed us to increase persistently the carriers concentration in
the range of about 20% for each sample. The behaviour of the samples under
infra-red illumination was caused by metastable properties of DX-Si centres present
in AlGaAs layer.

To generate stable weak magnetic fleld sweep necessary for weak localization
measurements we used a system of two superconducting coils (80 kG/80 kG) placed
in the same cryostat. Slowly tuning spread field of the upper coil was compensating
constant fleld in the bottom one. Typically the constant magnetic field in the
bottom (sample) coil was of the order of 50 gauss and the upper coil field was
tuning in the range from 0 to 80 kG.

For the case of degenerated 2D electron gas the diffusion constant can be
expressed as D = 1/2 (ħkF/m*) 2 τ, where kF is the Fermi vector, m* is the effective

§ We take this occasion to note that the quantities occasion ), occasion , τ^ó )introduced and deflned
in the original HLN paper are not the relaxation times of the corresponding spin components.
This notation has caused some confusion in the literature. The time τs which we introduced here,
is the relaxation time for the two in-plane spin components, while the relaxation time for the
normal to the plane is τs/2.
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mass of free carriers. In this case the Fermi vector kF = 2πΝs (Νs is the carriers
concentration). Using Eq. (1) and above formulas leads to

After each illumination Shubnikov-de Haas measurements were performed to es-
tablish Ns value. To calculate Btr parameter zero magnetic field mobility was used.
The Btr parameter derived from Eq. (9) changes from 20 gauss to 50 gauss for our
samples. The experimental system is described in more details in Ref. [4].

Figure 1 shows measurements of magnetoconductivity presented as a func-
tion of normalized magnetic field (x = Β/Β ) for various values of Btr (i.e, for
various samples and various rates of illumination). The universal behaviour of
magnetoconductivity manifests here by the fact that different curves are almost
parallel for x = B/Bt r greater than one. For smaller values of x magnetoconduc-
tivity depends strongly on spin and phase breaking mechanisms. This explains
why the curves for x < 1 are not parallel.

In Fig. 2 we present the fits of formula (6) for two of our experimental results.
One can see that both low field and high field behaviour is well reproduced. The
fitted values of ratio τφ/τ and ;/τ are marked on the picture. We found that
for our samples ιφ/τ changes in the range from 35 to 50, and ;/τ in the range
from 15 to 35. Because τ is determined from the zero field mobility and the known
effective mass [5] we calculated that the values of τφ change in the range 35-50 ps
and τs changes in the range 15-35 ps.

It is important to note that for x> 1 experimental data follow similar func-
tional dependence approaching the theoretically predicted universal behaviour.
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3. Conclusion

Weak localization corrections to conductivity of a 2D electron gas in GaInAs
quantum wells were studied. Theoretical model allowing a consistent description
of low (x < 1) and high (x > 1) magnetic field was presented. It allowed one to
estimate spin and phase relaxation times for examined structures. For x > 1 results
from different samples approach the theoretically predicted universal behaviour.
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