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POLARON PROBLEM IN QUANTUM WELLS*

W. BARDYSZEWSKI AND M. PRYWATA

Institute of Theoretical Physics, Warsaw University
Hoza 69, 00-681 Warszawa, Poland

The effect of polar interaction between an electron in a quantum well
and bulk longitudinal optical phonons is analysed. Electron spectral density
function is calculated in the lowest order cumulant approximation. The po-
sition and linewidth of the quasiparticle peak are obtained as a function of
quantum well width and temperature.

PACS numbers: 73.20.Dx, 71.38.4i, 72.80.Ey

1. Introduction

The problem of the polaron ground state energy and of effective mass renor-
malization in quantum wells has been widely discussed in literature [1, 2]. Con-
siderably less attention has been paid to the quantum well polaron lifetime [3], or
more generally, to the spectral density function which is closely related to the ex-
citonic absorption lineshape function. We employ the cumulant expansion method
which has been proved to be very accurate in the case of three-dimensional po-
larons [4]. The main idea of this method is to expand the correction to the phase
of the time dependent Green’s function in powers of the coupling constant. Such
an expansion is much faster convergent than a standard perturbation series for
the Green’s function. In practice, already the lowest order term provides a very
reasonable approximation.

2. Electron Green’s function

The presence of a quantum well generally affects bulk phonons by introduc-
ing interface and confined modes. These modifications are weak in many materials,
so we adopt a model of a quantum well confined electron interacting with unper-
turbed bulk phonons. With this simplification we can write the electron—phonon
Hamiltonian in the following form:

H= Z En(p)cL,pcnp + Z ﬁwoqubq
P e ’
+ Z chllp+Q|lcann'n(qz)(bq + bf—q)' (1)
nin pq :
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The electron and phonon annihilation operators are denoted by cnp and bq, respec- .
tively while wg is LO phonon frequency and Vg represents the three-dimensional
Frohlich coupling potential. The electron confinement introduces the factor
Mnni(g:) = [dze™i4:% F,(2)Fin(2) with Fy(z) denoting electron envelope func-
tion for the n-th subband with the dispersion given by E,(p).

The time dependent propagator for an electron with the momentum p par-
allel to the well plane can be expressed in terms of the cumulant series [5]

Gn(p,t) = Gy (p,t) exp {—i é %ﬁ [T ( /0 t dr /0 t dr'z,,(p,} —7')

x exp(iBa(p)(7 — T)))"]. }, (2)

where X, denotes the retarded self-energy function in the subband n. In the lowest
order with respect to the electron—phonon coupling one obtains

Gn(p,t) = Gi(p, t) exp (Pn(p,1)), ()
where the phase correction for the electron propagator is given by
t t
Ou(p,t) =i [ dr [ 45O (m,m - ) exp (Eule)(r - 7). @
0 0

Thus the lowest order cumulant expansion is reduced to the evaluation of the lowest

order self-energy with respect to the electron—phonon coupling Zﬁo)(p, 7—7'). This
is a very good approximation for the systems with a weak coupling such as in the
GaAs/AlGaAs lattice matched quantum wells.

The self-energy function can be easily evaluated for various quantum well
models.

3. Quasi two-dimensional limit

The limit of infinite confinement is particularly interesting. Since for a well
width L — 0 we have My, & 8,m, so for large ¢

@0 (p,t) = —itZ3°(p) - L3°(p) ©)
with the two-dimensional on-shell self-energy

ZP(p) = —awp [(No +1)K ( _’?20_1’2)

w

; wo . En(p)
+ NO,/w——————o_*_En(p)I& (‘/__wwEn(p))] (6)

and the renormalization factor

1 E,
L;?,D(p) - 5 (NO + l)H - (p), En(p) , _7_!'-
wo wo 2

- “wo 3/ En(P) En(P) m |
No (wo +En(P)) n (_wo +En(p) \| wo + Eu(p) ’5)} ()

where Ny denotes Bose-Einstein occupation factor for phonons, and K and IT are
elliptic functions of the first and of the third kind. The Fréhlich coupling constant
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is given by o = e2\/m* [2wo(1/€0o — 1/€0), where m* denotes the corresponding
effective mass. For the polaron with p = 0 one obtains an expression which is
identical to the three-dimensional one up to the multiplicative constant of 7/2 [6].

"The resulting spectral density function is given by a simple asymmetric
Lorentzian function

1 -L
An(p, E) = —;ImGn(p, E)=-2Im

e
. FLe-e 00 ©
This asymptotic result should be reasonably accurate in the vicinity of the res-

onance. The quality of this approximation can be judged from Fig. 1, in which
three model spectral density functions are presented. The Lorentzian curve (solid
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Fig. 1. Log of the polaron spectral density function at p = 0 for an infinitely narrow
GaAs/GaAlAs quantum well at 300 K; cumulant expansion — dashed line, asymmetric
Lorentzian — dotted line and Lorentzian model — solid line.

line) decays much slower than the other two. The dotted line representing the
asymmetric Lorentzian follows rather closely the exact, dashed curve. However, it
obviously does not reproduce the satellite structures present at the energy offset of
+wo from the central peak. The calculations are performed for the GaAs/GaAlAs
quantum well at 300 K.

4. Finite well width limit

The electron—phonon-coupling in realistic quantum wells is much more com-
plicated due to their finite thickness. In this case, the envelope function form-factor
M, will couple many subbands. In fact, it has been pointed out that it is im-
possible to recover the bulk, L — oo, limit without inclusion of the intersubband
electron—phonon scattering processes. In order to analyze the relative contribution
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Fig. 2. Real and imaginary part of the contributions from the intrasubband (81) and
the lowest order intersubband transitions (f2) to the coefficient 8 in the phase function
&, for the lowest subband. The GaAs/GaAlAs quantum well width is assumed to be
equal to 100 A.

of the intrasubband and intersubband transition for a finite confinement quan-
tum well we first represent @, as @, = 3., tfn(t) with B,:(t) corresponding to
the n’ level contribution to @, and evaluate separately the coefficients B,:. In
Fig. 2 the contributions from the lowest order intrasubband and first order inter-
subband transitions are presented with solid line corresponding to the imaginary,
and the dashed line to the real part of 8. The calculation are performed for a
100 A GaAs/GaAlAs QW at 300 K for an electron state with p = 0. As one can
easily see, the intrasubband processes give the dominant contribution while the
intersubband transitions can be neglected in this case. The asymptotic behaviour
of the coefficients 3 corresponds to the limit of the asymmetric Lorentzian model
(Eq. (8)). In the first approximation the asymptotic values of § determine the
energy renormalization and damping constant for a polaron.

5. Conclusions

We have presented a simple model for the polaron lineshape function in a
quantum well. Our calculation, based on the cumulant resumation principle, takes
into account multiphonon processes up to infinite order. The resulting spectral
density function has a proper asymptotic behaviour both in the limit of small and
large frequencies. Using our model, we have found that for most standard quan-
tum well structures, the intrasubband electron-phonon processes are dominant.
However, even in the single subband approximation the finite well thickness mod-
ifies the effective electron-phonon coupling. In the extremely narrow confinement

situation one can obtain a simple working formula for the spectral density function
of a polaron at the subband bottom.
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